Computation of the free energy for alternative crystal structures of hard spheres

(Note: The full text of this document is currently only available in the PDF Version )

Leslie V. Woodcock


Abstract

A single-occupancy cell (SO-cell) method has been applied to calculate the free energies of different crystal structures of hard spheres via molecular dynamics (MD). The objectives are (i) to examine the nature of the phase transition in the SO-cell model, (ii) to determine the thermodynamic stability of the bcc crystal phase relative to the fcc and the free fluid, (iii) to establish the relative stability of the fcc and hcp crystal structures, and (iv) to investigate hybrid structures of the unit stacking type ‘–ABCAB–'. MD computations are reported for the pressures of the SO-cell models of all these structures. The SO-cell phase transition for fcc and hcp is first-order, with ordered and disordered phases coexisting at the same p, V and T. The transition is much weaker for bcc. The metastable fluid–bcc phase transition parameters are determined; the bcc phase is everywhere unstable compared with fcc. The bcc solid melts to the metastable fluid at a pressure of 14.5 kBT3, and has a melting volume of 0.95 Nσ3, i.e., very close to that of the fcc crystal. A more precise numerical estimate for the fcc–hcp entropy difference is reported. At close packing the fcc phase is the more stable by 0.0026(1) NkBT; the Gibbs and Helmoltz energy differences are the same at close packing. For expanded volumes close to melting, the hcp crystal has a slightly higher pressure than the fcc; the enthalpy difference at melting is 0.0030(5) NkBT. Consequently the Gibbs energy difference approaching melting becomes less than the uncertainty in the computations, i.e. <0.001 NkBT.


References

  1. W. G. Hoover and F. H. Ree, J. Chem. Phys., 1968, 49, 3609 CrossRef CAS.
  2. J.-P. Hansen and L. Verlet, Phys. Rev., 1969, 184, 151 Search PubMed.
  3. S. Toxvaerd, J. Chem. Phys., 1978, 69, 4750 CrossRef CAS.
  4. J.-P. Hansen, Phys. Rev. A: Gen. Phys., 1970, 2, 221 Search PubMed.
  5. W. G. Hoover, M. Ross, K. W. Johnson, D. Henderson, J. A. Barker and E. C. Brown, J. Chem. Phys., 1970, 52, 4931 CrossRef CAS.
  6. B. J. Alder, W. G. Hoover and D. A. Young, J. Chem. Phys., 1968, 49, 3688 CrossRef CAS.
  7. B. J. Alder, D. A. Young, M. R. Mansigh and Z. W. Salzburg, J. Comput. Phys., 1971, 7, 361 CrossRef CAS.
  8. K. Honda, Prog. Theor. Phys., 1976, 55, 1024 Search PubMed.
  9. F. van Swol, L. V. Woodcock and J. N. Cape, J. Chem. Phys., 1980, 73, 913 CrossRef CAS.
  10. B. J. Alder and T. W. Wainwright, J. Chem. Phys., 1960, 33, 3813 CrossRef CAS.
  11. L. V. Woodcock, Nature (London), 1997, 385, 141 CrossRef CAS.
  12. J. G. Kirkwood, J. Chem. Phys., 1950, 18, 380 CrossRef CAS.
  13. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1979, 51, 635 CrossRef.
  14. L. V. Woodcock, Ann. NY Acad. Sci., 1981, 371, 274 CAS.
  15. S. Alexander and J. P. McTague, Phys. Rev. Lett., 1978, 41, 702 CrossRef CAS.
  16. D. B. Nicolaides and L. V. Woodcock, J. Phys. A: Math. Gen., 1997, 30, 345 Search PubMed.
  17. R. A. Gray, P. B. Warren, S. Chynoweth, Y. Michopoulos and G. S. Pawley, Proc. R. Soc. London A, 1995, 448, 113 CAS.
  18. B. Bayens, PhD Thesis, University of Ghent, 1996.
  19. B. Bayens, 1996, personal communication.
  20. R. Car, Nature (London), 1997, 384, 115 CrossRef.
  21. R. Speedy, 1997, personal communication.
  22. F. H. Stillinger Jr. and Z. W. Salsburg, J. Chem. Phys., 1967, 46, 3962 CrossRef.
  23. W. G. Rudd, Z. W. Salzburg, A. P. Yu and F. H. Stillinger Jr., J. Chem. Phys., 1968, 49, 4857 CrossRef CAS.
  24. B. J. Alder, B. P. Carter and D. A. Young, Phys. Rev., 1969, 183, 831 Search PubMed.
  25. W. G. Hoover, J. Chem. Phys., 1968, 49, 1981 CrossRef CAS.
  26. K. W. Kratky, Chem. Phys., 1981, 51, 167 CrossRef.
  27. D. Frenkel and A. J. C. Ladd, J. Chem. Phys., 1984, 81, 3188 CrossRef CAS.
  28. A. Van Blaarderen, R. Ruel and P. Wiltzius, Nature (London), 1977, 385, 321 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.