Free energy of formation of defects in polar solids

(Note: The full text of this document is currently only available in the PDF Version )

M. B. Taylor, G. D. Barrera, N. L. Allan, T. H. K. Barron and W. C. Mackrodt


Abstract

A more exact method than hitherto available, based on lattice statics and quasi-harmonic lattice dynamics, is presented for the direct minimisation of the free energies of periodic solids with very large unit cells. This is achieved via the calculation of analytic derivatives of the vibrational frequencies with respect to all external and internal variables. The method, together with large defective supercells, is used to calculate the free energies of defects in MgO as a function of temperature. A major advantage of the supercell approach is that constant-volume and constant-pressure quantities are calculated independently. This allows a critical appraisal of the common approximations used for many years: (i) to convert constant-volume defect parameters to constant-pressure and (ii) to justify the use of static calculations at constant volume in the interpretation of experimental data obtained at constant pressure and at high temperatures. Defect enthalpies show only a small variation with temperature and differ by ca. 2% from the internal energy change in the static limit. An assessment is also made of the commonly used ZSISA approximation, in which the free energy at each temperature is minimised with respect to external strains only, simultaneously determining the internal strains by minimising the static lattice energy.


References

  1. E.g. D. Fincham, W. C. Mackrodt and P. J. Mitchell, J. Phys. Condens. Matter, 1994, 6, 393 Search PubMed.
  2. E.g. G. D. Barrera, M. B. Taylor, N. L. Allan, T. H. K. Barron, L. N. Kantorovich and W. C. Mackrodt, J. Chem. Phys., 1997, 107, 4337 Search PubMed.
  3. E.g.Computer Simulation of Solids, ed. C. R. A. Catlow and W. C. Mackrodt, Springer-Verlag, Berlin, 1982 Search PubMed.
  4. J. Chem. Soc., Faraday Trans. 2, 1989, 85, 335–579 Search PubMed.
  5. Computer Modelling in Inorganic Crystallography, ed. C. R. A. Catlow, Academic Press, San Diego, CA, 1997 Search PubMed.
  6. Strictly constant lattice parameter in situations where the number of lattice sites changes.
  7. E.g. N. L. Allan, W. C. Mackrodt and M. Leslie, Adv. Ceram., 1987, 23, 257 Search PubMed.
  8. S. C. Parker and G. D. Price, Adv. Solid-State Chem, 1989, 1, 295 Search PubMed.
  9. A. Pavese, M. Catti, S. C. Parker and A. Wall, Phys. Chem. Miner, 1996, 23, 89 CrossRef CAS.
  10. M. J. Gillan and P. W. M. Jacobs, Phys. Rev. B, 1983, 28, 759 CrossRef CAS.
  11. J. H. Harding and A. M. Stoneham, Philos. Mag. B, 1981, 43, 705 Search PubMed.
  12. E.g. J. H. Harding, J. Chem. Soc., Faraday Trans. 2, 1989, 85, 351 Search PubMed and references therein.
  13. E.g.C. R. A. Catlow and W. C. Mackrodt, in ref. 3, ch. 1.
  14. E.g.D. C. Wallace, Thermodynamics of Crystals, Wiley, New York, 1972 Search PubMed.
  15. E.g. D. J. Chadi and M. L. Cohen, Phys. Rev. B, 1973, 8, 5747 Search PubMed.
  16. If details of low-temperature behaviour are required, finer grids can be used as q= 0 is approached; see, e.g. T. H. K. Barron and A. Pasternak, J. Phys. C, 1987, 20, 215 Search PubMed.
  17. T. H. K. Barron, T. G. Gibbons and R. W. Munn, J. Phys. C, 1971, 4, 2805 CrossRef CAS.
  18. T. G. Gibbons, Phys. Rev. B, 1973, 7, 1410 CrossRef CAS.
  19. A. B. Pippard, The Elements of Classical Thermodynamics, Cambridge University Press, Cambridge, 1964 Search PubMed.
  20. T. H. K. Barron and K. J. Rogers, Mol. Simul., 1989, 4, 27 Search PubMed.
  21. G. D. Barrera, M. B. Taylor, N. L. Allan and T. H. K. Barron, Phys. Rev. B, 1997, 56, 14 380 CrossRef CAS.
  22. Second derivatives of the frequencies (not needed in the present application) require second-order perturbation theory. Application to ionic crystals is discussed by L. N. Kantorovich, Phys. Rev. B, 1995, 51, 3520; 3535 Search PubMed.
  23. P. J. Harley, in Numerical Algorithms, ed., J. L. Mohamed and J. E. Walsh, Clarendon Press, Oxford, 1986, p. 239 Search PubMed.
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes in Fortran, Cambridge University Press, Cambridge, 2nd edn., 1992, 420 Search PubMed.
  25. N. L. Allan, M. Braithwaite, D. L. Cooper, W. C. Mackrodt and S. C. Wright, J. Chem. Phys., 1991, 95, 6792 CrossRef CAS.
  26. C. R. A. Catlow, J. Corish, P. W. M. Jacobs and A. B. Lidiard, J. Phys. C, 1981, 14, L125 CrossRef CAS.
  27. M. J. Gillan, Philos. Mag. A, 1981, 43, 301 Search PubMed.
  28. E.g. J. Corish, C. R. A. Catlow and P. W. M. Jacobs, J. Phys. Lett., 1981, 42, L372 Search PubMed; P. W. M. Jacobs, J. Corish and B. A. Devlin, Photogr. Sci. Eng., 1982, 26, 50 Search PubMed.
  29. The potentials are taken from the consistent set of Buckingham potentials for the alkaline-earth metal oxides given by M. J. L. Sangster and A. M. Stoneham, Philos. Mag. B, 1985, 52, 717 Search PubMed we have extended the cut-off to 9 Å.
  30. N. L. Allan, T. H. K. Barron and J. A. O. Bruno, J. Chem. Phys., 1996, 105, 8300 CrossRef CAS and references therein.
  31. R. M. Fracchia, G. D. Barrera, N. L. Allan, T. H. K. Barron and W. C. Mackrodt, J. Phys. Chem. Solids, in press Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.