Simulation of adsorption and diffusion of hydrocarbons in zeolites

(Note: The full text of this document is currently only available in the PDF Version )

Berend Smit, L. Daniël J. C. Loyens and Guy L. M. M. Verbist


Abstract

Molecular simulations are used to investigate the energetics and siting of linear and branched alkanes in the zeolite silicalite. The calculated heats of adsorption of the branched alkanes are in good agreement with the experimental data. The simulations show a striking difference between the behaviour of linear and branched alkanes. The linear alkanes are relatively free to move in all channels of the zeolites. The branched alkanes are trapped with their CH group in the intersection of the zig-zag and straight channels of silicalite. This trapping of the branched alkanes suggests that diffusion of these molecules is an activated process; most of the time the molecule is located in the intersection but, occasionally, it hops from one intersection to another. The straight and zig-zag channels form a barrier for the diffusion. We present some preliminary calculations of this hopping rate, from which the diffusion coefficient can be calculated. These preliminary results are in reasonable agreement with experimental data.


References

  1. Modelling of Structure and Reactivity in Zeolites, ed. C. R. A. Catlow, Academic Press, London, 1992 Search PubMed.
  2. S. D. Pickett, A. K. Nowak, J. M. Thomas, B. K. Peterson, J. F. Swift, A. K. Cheetham, C. J. J. den Ouden, B. Smit and M. Post, J. Phys. Chem., 1990, 94, 1233 CrossRef CAS.
  3. A. K. Nowak, C. J. J. den Ouden, S. D. Pickett, B. Smit, A. K. Cheetham, M. F. M. Post and J. M. Thomas, J. Phys. Chem., 1991, 95, 848 CrossRef CAS.
  4. R. L. June, A. T. Bell and D. N. Theodorou, J. Phys. Chem., 1992, 96, 1051 CrossRef CAS.
  5. E. Hernández and C. R. A. Catlow, Proc. R. Soc. London, Ser. A, 1995, 448, 143 CAS.
  6. B. Smit and J. I. Siepmann, Science, 1994, 264, 1118 CAS.
  7. B. Smit and T. L. M. Maesen, Nature (London), 1995, 374, 42 CAS.
  8. S. P. Bates, W. J. M. van Wel, R. A. van Santen and B. Smit, J. Am. Chem. Soc., 1996, 118, 6753 CrossRef CAS.
  9. S. P. Bates, W. J. M. van Wel, R. A. van Santen and B. Smit, J. Phys. Chem., 1996, 100, 17573 CrossRef CAS.
  10. E. J. Maginn, A. T. Bell and D. N. Theodorou, J. Phys. Chem., 1995, 99, 2057 CrossRef CAS.
  11. Y. Wang, K. Hill and J. G. Harris, J. Phys. Chem., 1994, 100, 3276 CrossRef CAS.
  12. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 Search PubMed.
  13. A. G. Bezus, A. V. Kiselev, A. A. Lopatkin and P. Q. Du, J. Chem. Soc., Faraday Trans. 2, 1978, 74, 367 RSC.
  14. C. L. Cavalcante Jr. and D. M. Ruthven, Ind. Eng. Chem. Rev., 1995, 34, 177 Search PubMed.
  15. F. Eder, PhD thesis, Universiteit Twente, The Netherlands, 1996.
  16. R. L. June, A. T. Bell and D. N. Theodorou, J. Phys. Chem., 1990, 94, 1508 CrossRef CAS.
  17. B. Smit and J. I. Siepmann, J. Phys. Chem., 1994, 98, 8442 CrossRef CAS.
  18. C. H. Bennett, in Diffusion in Solids: Recent Developments, ed. A. S. Nowick and J. J. Burton, Academic Press, New York, 1975, pp. 73–113 Search PubMed.
  19. D. Chandler, J. Chem. Phys., 1978, 68, 2959 CrossRef CAS.
  20. D. Frenkel and B. Smit, Understanding Molecular Simulations: from Algorithms to Applications, Academic Press, Boston, 1996 Search PubMed.
  21. B. Smit, L. D. J. C. Loyens, G. L. M. M. Verbist and D. Frenkel, in preparation.
  22. J. Kärger and D. M. Ruthven, Diffusion in Zeolites and other Microporous Solids, Wiley, New York, 1992 Search PubMed.
  23. M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys., 1955, 23, 356 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.