Temperature dependence of the levitation effect Implications for separation of multicomponent mixtures

(Note: The full text of this document is currently only available in the PDF Version )

Subramanian Yashonath and bc and Chitra Rajappa


Abstract

Sufficiently long molecular dynamics simulations have been carried out on spherical monatomic sorbates in NaY zeolite, interacting via simple Lennard-Jones potentials, to investigate the dependence of the levitation effect on the temperature. Simulations carried out in the range 100–300 K suggest that the anomalous peak in the diffusion coefficient (observed when the levitation parameter, γ, is near unity) decreases in intensity with increase in temperature. The rate of cage-to-cage migrations also exhibits a similar trend. The activation energy obtained from Arrhenius plots is found to exhibit a minimum when the diffusion coefficient is a maximum, corresponding to the γ≈1 sorbate diameter. In the linear or normal regime, the activation energy increases with increase in sorbate diameter until it shows a sharp decrease in the anomalous regime. Locations and energies of the adsorption sites and their dependence on the sorbate size gives interesting insight into the nature of the underlying potential-energy surface and further explain the observed trend in the activation energy with sorbate size. Cage residence times, τc, show little or no change with temperature for the sorbate with diameter corresponding to γ≈1, whereas there is a significant decrease in τc with increase in temperature for sorbates in the linear regime. The implications of the present study for the separation of mixtures of sorbates are discussed.


References

  1. J. Chem. Soc., Faraday Trans., 1991, 87(13) Search PubMed.
  2. R. M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves, Academic Press, New York, 1978 Search PubMed.
  3. J. Karger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids, Wiley, New York, 1992 Search PubMed.
  4. D. M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, New York, 1984 Search PubMed.
  5. R. L. June, T. A. Bell and D. N. Theodorou, J. Phys. Chem., 1990, 94, 1508 CrossRef CAS.
  6. J. O. Titiloye, S. C. Parker, F. S. Stone and C. R. A. Catlow, J. Phys. Chem., 1991, 95, 4038 CrossRef CAS.
  7. N. J. Henson, A. K. Cheetham, B. K. Peterson, S. D. Pickett and J. M. Thomas, J. Comput. Aided Mater. Des., 1993, 1, 41 CrossRef CAS.
  8. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1974 Search PubMed.
  9. S. Yashonath and P. Santikary, Mol. Phys., 1993, 78, 1 CAS.
  10. S. Yashonath and P. Santikary, J. Phys. Chem., 1994, 98, 6368 CrossRef CAS.
  11. S. Bandyopadhyay and S. Yashonath, J. Phys. Chem., 1995, 99, 4286 CrossRef CAS.
  12. R. Chitra and S. Yashonath, unpublished results.
  13. A. N. Fitch, H. Jobic and A. Renouprez, J. Phys. Chem., 1986, 90, 1311 CrossRef CAS.
  14. A. V. Kiselev and P. Q. Du, J. Chem. Soc., Faraday Trans 2, 1981, 77, 1 RSC.
  15. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids, Clarendon Press, Oxford, 1987 Search PubMed.
  16. S. Yashonath and P. Santikary, J. Phys. Chem., 1993, 97, 3849 CrossRef CAS.
  17. R. Chitra and S. Yashonath, J. Phys. Chem., 1997, in press Search PubMed.
  18. S. Yashonath and P. Santikary, J. Phys. Chem., 1993, 97, 13778 CrossRef.
  19. P. R. van Tassel, S. A. Somers, H. T. Davis and A. V. McCormick, Chem. Eng. Sci., 1994, 49, 2979 CrossRef CAS.
  20. D. Chandler, J. Chem. Phys., 1978, 68, 2959 CrossRef CAS.
  21. J. A. Montgomery, D. Chandler and B. J. Berne, J. Chem. Phys., 1979, 70, 4056 CrossRef CAS.
  22. T. Mosell, G. Schrimpf, C. Hahn and J. Brickmann, J. Phys. Chem., 1996, 100, 4571 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.