trans Effect and trans influence of triphenyl-stibine and -phosphine in platinum(II) complexes. A comparative mechanistic and structural study[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Ola F. Wendt and Lars I. Elding


Abstract

The kinetics and mechanism of the reactions between trans-[PtI3(PPh3)] and trans-[PtI3(SbPh3)] with pyridine, 2- and 4-methylpyridine in acetonitrile solvent have been studied by stopped-flow spectrophotometry. The crystal and molecular structures of the tetrabutylammonium salts of the two anions have been determined. Substitution of iodide trans to stibine is reversible and takes place via parallel direct and solvolytic pathways; substitution in the phosphine complex occurs with negligible back reaction. The kinetic data indicate that triphenyl-stibine and -phosphine should be placed in a series of decreasing trans effect, C2H4 > SbPh3 > CO > P(OMe)3 > PPh3 > AsEt3, i.e. SbPh3 has a much larger trans effect than that of PPh3; stibine complexes in the present study react ca. 16 times faster than their phosphine analogues. The activation parameters are typical of associatively activated processes, and in the case of the stibine complex they indicate that very little bond breaking has occurred in the transition state. In the ground states there is a clear-cut difference in the Pt–I distances trans to the pnictogen, 2.637(2) Å in the stibine complex and 2.662(3) Å in the phosphine complex, indicating that SbPh3 has a smaller ground-state trans influence and hence is a weaker σ donor than PPh3. Since the kinetic trans effect is a combination of ground-state labilisation and transition-state stabilisation, it is concluded that the large trans effect of stibine is due to a better π acceptance. Based on a comparison of Sb–C distances and C–Sb–C angles in free and co-ordinated stibine, this is proposed to be due to a higher d character of the π* orbitals on stibine as compared to phosphine, leading to a better overlap between antimony π* and platinum 5d π orbitals.


References

  1. N. R. Champness and W. Levason, Coord. Chem. Rev., 1994, 133, 115 CrossRef CAS.
  2. W. Levason and C. A. McAuliffe, Acc. Chem. Res., 1978, 11, 363 CrossRef CAS.
  3. T. P. Cheeseman, A. L. Odell and H. A. Raethel, Chem. Commun., 1968, 1496 RSC.
  4. O. F. Wendt, A. Scodinu and L. I. Elding, Inorg. Chim. Acta, 1997, in the press Search PubMed.
  5. T. G. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev., 1973, 10, 335 CrossRef CAS.
  6. T. G. Appleton and M. A. Bennett, Inorg. Chem., 1978, 17, 738 CrossRef CAS.
  7. O. F. Wendt, Å. Oskarsson, J. G. Leipoldt and L. I. Elding, Inorg. Chem., 1997, 36, 4514 CrossRef.
  8. O. F. Wendt, Ph.D. Thesis, Lund University, 1997.
  9. O. F. Wendt and L. I. Elding, Inorg. Chem., 1997, 36 in the press.
  10. R. Romeo and M. L. Tobe, Inorg. Chem., 1974, 13, 1991 CrossRef CAS.
  11. B. P. Kennedy, R. Gosling and M. L. Tobe, Inorg. Chem., 1977, 16, 1744 CrossRef CAS.
  12. R. Gosling and M. L. Tobe, Inorg. Chim. Acta, 1980, 42, 223 CrossRef CAS.
  13. R. Gosling and M. L. Tobe, Inorg. Chem., 1983, 22, 1235 CrossRef CAS.
  14. M. L. Tobe, A. T. Treadgold and L. Cattalini, J. Chem. Soc., Dalton Trans., 1988, 2347 RSC.
  15. P. L. Goggin, R. J. Goodfellow and F. J. S. Reed, J. Chem. Soc., Dalton Trans., 1972, 1298 RSC.
  16. P. L. Goggin, J. Chem. Soc., Dalton Trans., 1974, 1483 RSC.
  17. W. Baratta and P. S. Pregosin, Inorg. Chim. Acta, 1993, 209, 85 CrossRef CAS.
  18. TEXSAN, Structure Analysis Software, Molecular Structure Corporation, The Woodlands, TX, 1985.
  19. Bio Sequential SX-17MV Stopped flow ASVD Spectrofluorimeter, software manual, Applied Photophysics, Leatherhead, 1994.
  20. D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton and J. G. Smith, J. Chem. Soc. A, 1970, 545 RSC.
  21. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  22. MATLAB 4.2, The Math Works, Inc., Natick, MA, 1995.
  23. F. Basolo, J. Chatt, H. B. Gray, R. G. Pearson and B. L. Shaw, J. Chem. Soc., 1961, 2207 RSC.
  24. C. H. Langford and H. B. Gray, Ligand Substitution Processes, W. A. Benjamin, New York, 1965 Search PubMed.
  25. L. Canovese, M. L. Tobe and L. Cattalini, J. Chem. Soc., Dalton Trans., 1985, 27 RSC.
  26. L. Cattalini, A. Orio and A. Doni, Inorg. Chem., 1966, 5, 1517 CrossRef CAS.
  27. L. Canovese, L. Cattalini, G. Marangoni, G. Michelon and M. L. Tobe, Inorg. Chem., 1981, 20, 4166 CrossRef.
  28. A. D. Westland, J. Chem. Soc., 1965, 3060 RSC.
  29. C. A. McAuliffe, I. E. Niven and R. V. Parish, Inorg. Chim. Acta, 1975, 15, 67 CrossRef CAS.
  30. B. J. Dunne, R. B. Morris and A. G. Orpen, J. Chem. Soc., Dalton Trans., 1991, 653 RSC.
  31. D. S. Marynick, J. Am. Chem. Soc., 1984, 106, 4064 CrossRef CAS.
  32. A. G. Orpen and N. G. Connelly, Organometallics, 1990, 9, 1206 CrossRef CAS.
  33. E. A. Adams, J. W. Kolis and W. T. Pennington, Acta Crystallogr., Sect. C, 1990, 46, 917 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.