Halide-bridged arsine- and phosphine-capped diruthenium complexes, [(R3As)3Ru(µ-X)3Ru(AsR3)3]+ and [(R3P)3Ru(µ-X)3Ru(PR3)3]+ (X = Cl or Br), as precursors to confacial mixed-valence ruthenium ‘blues’: spectroelectrochemical studies spanning the binuclear oxidation states II,II, II,III and III,III

(Note: The full text of this document is currently only available in the PDF Version )

Brett D. Yeomans, David G. Humphrey and Graham A. Heath


Abstract

A series of six tertiary-arsine-capped binuclear complexes, [L3Ru(µ-X)3RuL3][CF3SO3] (L = AsMe3, AsMe2Ph or AsMePh2; X = Cl or Br) together with a full range of purely PR3-capped analogues and the mixed-ligand complex [(Ph3P)(Me3As)2Ru(µ-Cl)3Ru(AsMe3)2(PPh3)][CF3SO3] have been characterised. The previously neglected arsine-capped compounds share the well defined electrochemical behaviour of their phosphine congeners. Stepwise reversible oxidations connect the Ru2II,II closed-shell d6d6 (=12-e) resting state with the d5d6 (11-e) and d5d5 (10-e) levels, and all the mixed-valence [L3Ru(µ-X)3RuL3]2+ species can be characterised through electrogeneration in CH2Cl2 at –60 °C. Unexpectedly, the Ru2II,III arsine complexes strongly resemble the classical ruthenium ‘blues’ where L = NH3 or H2O. For such valence-delocalised systems the visible region ordinarily contains an intense σ → σ* band (the source of the intense blue colour) together with a much weaker, near-infrared δπ* → σ* band. Bonding within the {RuX3Ru}2+ core can then be monitored directly by νσ[hair space][hair space]σ*. The distinctly different spectral appearance of the more familiar PR3-capped mixed-valence compounds has been a long-standing puzzle, but the twenty electrogenerated 11-e binuclear systems assembled here with various AsR3 or PR3 terminal ligands are all delocalised, and clearly belong within a continuum of electronic behaviour with steadily decreasing metal–metal interaction. In all, νσ[hair space][hair space]σ* declines over a considerable range from 17 000 to below 5000 cm–1, with the ligands ranked as follows: L = NH3 (and 1,4,7-trimethyl-1,4,7-triazacyclononane) > H2O > Cl, Br (i.e. nonahalides) > AsR3 > PR3 and µ-Cl > µ-Br. These changes are well correlated with systematic trends in the g and g components of the axial g tensor, and also with the gap between the stepwise oxidation potentials which shrinks from 1.2 to 0.45 V. For the PR3 complexes the decrease in νσ[hair space][hair space]σ* is accompanied by progressive intensity transfer to the δπ* → σ* band. The anticipated Ru · · · Ru separation is of the order of 2.9 and 3.0 Å for the mixed-valence AsMe3/µ-Cl and PMe3/µ-Cl systems respectively, markedly longer than the crystallographic value of 2.75 Å in [(NH3)3Ru(µ-Cl)3Ru(NH3)3]2+. The geometric distinction between the AsR3- and PR3-capped dimers is an unexpected consequence of selective crowding between the substituent R groups and the {µ-X3} array. The present Ru2II,III systems are electronically distinct from their PR3-containing osmium counterparts, such as [(Et3P)3Os(µ-Cl)3Os(PEt)3]2+, which show still greater visible/near-infrared spectral deviations.


References

  1. B. D. Yeomans, Ph.D. Thesis, Mixed-valency in Confacial Bioctahedral Complexes of Ruthenium and Osmium, The Australian National University, 1995 Search PubMed.
  2. D. G. Humphrey, Ph.D. Thesis, Binuclear Osmium Complexes and Related Complexes, The Australian National University, 1992 Search PubMed.
  3. E. A. Seddon and K. R. Seddon, The Chemistry of Ruthenium, Elsevier, Amsterdam, 1984 Search PubMed; M. Schröder and T. A. Stephenson, in Comprehensive Coordination Chemistry, ed. G. Wilkinson, Pergamon, New York, 1987, vol. 4, ch. 45, pp. 277–518 Search PubMed; F. A. Cotton and R. A. Walton, Multiple Bonds between Metal Atoms, Oxford University Press, 2nd edn., 1993, pp. 600–606 Search PubMed.
  4. G. A. Heath and J. E. McGrady, J. Chem. Soc., Dalton Trans., 1994, 3759 RSC.
  5. E. E. Mercer and P. E. Dumas, Inorg. Chem., 1971, 10, 2755 CrossRef CAS; E. E. Mercer and L. W. Gray, J. Am. Chem. Soc., 1972, 94, 6426 CrossRef CAS.
  6. J. Chatt and R. G. Hayter, J. Chem. Soc., 1961, 896 RSC.
  7. G. A. Heath, A. J. Lindsay, T. A. Stephenson and D. K. Vattis, J. Organomet. Chem., 1982, 233, 353 CrossRef CAS.
  8. B. J. Kennedy, G. A. Heath and T. J. Khoo, Inorg. Chim. Acta, 1991, 190, 672 CrossRef CAS.
  9. R. H. Summerville and R. Hoffmann, J. Am. Chem. Soc., 1979, 101, 3821 CrossRef; W. C. Trogler, Inorg. Chem., 1980, 19, 697 CrossRef CAS.
  10. N. S. Hush, J. K. Beattie and V. M. Ellis, Inorg. Chem., 1984, 23, 3339 CrossRef CAS.
  11. L. Dubicki and E. R. Kraus, Inorg. Chem., 1985, 24, 4461 CrossRef CAS.
  12. R. S. Armstrong, W. A. Horsfield and K. W. Nugent, Inorg. Chem., 1990, 29, 4551 CrossRef CAS.
  13. K. Wieghardt, W. Herrmann, M. Köppen, I. Jibril and G. Huttner, Z. Naturforsch., Teil B, 1984, 39, 1335 Search PubMed.
  14. P. Neubold, B. S. P. Della Vedova, K. Wieghardt, B. Nuber and J. Weiss, Inorg. Chem., 1990, 29, 3355 CrossRef CAS.
  15. W. A. Clucas, Ph.D. Thesis, University of Sydney, 1994; W. A. Clucas, R. S. Armstrong, I. E. Buys, T. W. Hambley and K. W. Nugent, Inorg. Chem., 1996, 35, 6789 Search PubMed.
  16. G. A. Heath, G. Hefter, D. R. Robertson, W. J. Sime and T. A. Stephenson, J. Organomet. Chem., 1978, 152, C1 CrossRef CAS.
  17. T. Arthur, R. Contreras, G. A. Heath, G. Hefter, A. J. Lindsay, D. J. Riach and T. A. Stephenson, J. Organomet. Chem., 1979, 179, C49 CrossRef CAS.
  18. S. A. Macgregor, E. McInnes, R. J. Sorbie and L. J. Yellowlees, in Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds, Eds. A. J. L. Pombeiro and J. A. McCleverty, NATO ASI Series C, Kluwer, Dordrecht, 1993, vol. 345, pp. 503–517 Search PubMed.
  19. M. S. Lupin and B. L. Shaw, J. Chem. Soc. A, 1968, 741 RSC.
  20. D. A. Couch and S. D. Robinson, Inorg. Chem., 1974, 13, 456 CrossRef CAS.
  21. P. W. Armit, A. S. F. Boyd and T. A. Stephenson, J. Chem. Soc., Dalton Trans., 1975, 1663 RSC.
  22. M. Laing and L. Pope, Acta Crystallogr., Sect. B, 1976, 32, 1547 CrossRef.
  23. W. J. Sime and T. A. Stephenson, J. Organomet. Chem., 1977, 124, C23 CrossRef CAS.
  24. K. A. Raspin, J. Chem. Soc. A, 1969, 461 RSC.
  25. L. F. Rhodes, C. Sorato, L. M. Venanzi and F. Bachechi, Inorg. Chem., 1988, 27, 604 CrossRef CAS.
  26. G. Albertin, S. Antoniutti and E. Bordignon, J. Chem. Soc., Dalton Trans., 1987, 1813 RSC.
  27. A. Albinati, Q. Jiang, H. Rügger and L. M. Venanzi, Inorg. Chem., 1993, 32, 4940 CrossRef CAS.
  28. E. G. Leelamani and G. K. N. Reddy, Inorg. Nucl. Chem. Lett., 1975, 11, 5 Search PubMed.
  29. K. G. Srinivasamurthy, N. M. Nanje-Gowda and G. K. N. Reddy, J. Inorg. Nucl. Chem., 1977, 39, 1977 CrossRef CAS.
  30. V. T. Coombe, G. A. Heath, T. A. Stephenson and D. K. Vattis, J. Chem. Soc., Dalton Trans., 1983, 2307 RSC.
  31. J. E. Fergusson and A. M. Greenaway, Aust. J. Chem., 1978, 31, 497 CAS.
  32. J. Chatt, B. L. Shaw and A. E. Field, J. Chem. Soc., 1964, 3466 RSC.
  33. A. J. Lindsay, Ph.D. Thesis, Redox-active Binuclear Complexes of Ruthenium and Osmium, University of Edinburgh, 1982 Search PubMed.
  34. C. Shi and F. C. Anson, Inorg. Chim. Acta, 1994, 225, 215 CrossRef CAS.
  35. L. D. Dubicki, unpublished work.
  36. R. Contreras, G. G. Elliot, R. O. Gould, G. A. Heath and T. A. Stephenson, J. Organomet. Chem., 1981, 215, C6 CrossRef CAS.
  37. F. A. Cotton and R. C. Torralba, Inorg. Chem., 1991, 30, 2196 CrossRef CAS.
  38. N. S. Hush, A. Edgar and J. K. Beattie, Chem. Phys. Lett., 1980, 69, 128 CrossRef CAS.
  39. N. S. Hush, in Mixed Valence Compounds, ed. D. B. Brown, Reidel, Dordrecht, 1980, pp. 151–188 Search PubMed.
  40. S. E. Boyd, R. Bramley, L. Dubicki, G. A. Heath, D. G. Humphrey, P. D. Prenzler and B. D. Yeomans, unpublished work.
  41. G. A. Heath, D. C. R. Hockless and B. D. Yeomans, Acta Crystallogr., Sect. C, 1996, 52, 854 CrossRef.
  42. D. C. R. Hockless, B. D. Yeomans and G. A. Heath, unpublished work.
  43. J. A. Statler, G. Wilkinson, M. Thornton-Pett and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1984, 1731 RSC.
  44. J. E. McGrady, Ph.D. Thesis, Electronic Structure and Optical Spectra of Transition Metal Complexes, The Australian National University, 1994 Search PubMed.
  45. M. N. Hughes, D. O'Reardon, R. K. Poole, M. B. Hursthouse and M. Thornton-Pett, Polyhedron, 1987, 6, 1711 CrossRef CAS.
  46. J. K. Beattie, P. Del Favero, T. W. Hambley and N. S. Hush, Inorg. Chem., 1988, 27, 2000 CrossRef CAS.
  47. D. R. Gamelin, E. L. Bominaar, C. Mathoniére, M. L. Kirk, K. Wieghardt, J.-J. Girerd and E. I. Solomon, Inorg. Chem., 1996, 35, 4323 CrossRef CAS.
  48. J. E. Sutton, P. M. Sutton and H. Taube, Inorg. Chem., 1979, 18, 1017 CrossRef CAS; C. Creutz, Prog. Inorg. Chem., 1983, 30, 1 CAS.
  49. M. B. Robin and P. Day, Adv. Inorg. Chem. Radiochem., 1967, 10, 247 Search PubMed.
  50. G. A. Heath, J. E. McGrady, R. G. Raptis and A. C. Willis, Inorg. Chem., 1996, 35, 6838 CrossRef CAS.
  51. R. J. Crutchley, Adv. Inorg. Chem., 1994, 41, 273 CAS.
  52. D. C. Ware, M. M. Olmstead, R. Wang and H. Taube, Inorg. Chem., 1996, 35, 2576 CrossRef CAS.
  53. G. A. Heath and D. G. Humphrey, J. Chem. Soc., Chem. Commun., 1990, 672 RSC.
  54. S. F. Gheller, G. A. Heath, D. C. R. Hockless, D. G. Humphrey and J. E. McGrady, Inorg. Chem., 1994, 33, 3986 CrossRef CAS.
  55. N. J. Homes, A. R. G. Genge, W. Levason and M. Webster, J. Chem. Soc., Dalton Trans., 1997, 2331 RSC.
  56. T. A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 1966, 28, 945 CrossRef CAS.
  57. G. J. Burrows and E. E. Turner, J. Chem. Soc., 1920, 1373 Search PubMed.
  58. M. L. Leutkens, A. P. Sattelberger, H. H. Murray, J. D. Basil and J. P. Fackler, Inorg. Synth., 1989, 26, 7 CAS.
  59. C. M. Duff and G. A. Heath, J. Chem. Soc., Dalton Trans., 1991, 2401 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.