Electrochemistry of molybdenum imides: cleavage of molybdenum–nitrogen triple bonds to release ammonia or amines[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Yatimah Alias, Saad K. Ibrahim, M. Arlete Queiros, Antonio Fonseca, Jean Talarmin, Florence Volant and Christopher J. Pickett


Abstract

The electrochemical reduction of molybdenum(IV) alkylimides trans-[MoX(NR)(dppe)2]+ (X = halide, R = alkyl, dppe = Ph2PCH2CH2PPh2) proceeded by two pathways. In the absence of a source of protons, moderately stable five-co-ordinate molybdenum(II) imides are formed via an initial single-electron transfer followed by rate-determining loss of the trans-halide ligand and an additional electron transfer. In the presence of a source of protons, molybdenum–halide bond cleavage is intercepted by protonation at N which gives an amide intermediate. Further electron-transfer chemistry liberates amines and yields a dinitrogen complex in an overall four-electron process. Molybdenum(IV) imides trans-[MoX(NH)(dppe)2]+ were reduced to amide intermediates with the parent imide cation providing the source of protons and water probably acts as a proton-transfer relay. The amide has two fates; it is either converted into a nitride by hydrogen loss or, at a potential which encompasses its further reduction, yields ammonia and a dinitrogen complex.


References

  1. M. Hidai and Y. Ishii, J. Mol. Catal., 1996, 107, 105 Search PubMed; M. Hidai and Y. Mizobe, Chem. Rev., 1995, 95, 1115 CrossRef CAS; Y. Mizobe, Y. Ishii and M. Hidai, Coord. Chem. Rev., 1995, 139, 281 CrossRef CAS.
  2. T. Yoshida, T. Adachi, T. Ueda, M. Kaminaka, N. Sasaki, T. Higuchi, T. Aoshima, I. Mega, Y. Mizobe and M. Hidai, Angew. Chem., Int. Ed. Engl., 1989, 28, 1040 CrossRef.
  3. J. Chatt, J. R. Dilworth and R. L. Richards, Chem. Rev., 1978, 78, 589 CrossRef CAS; R. A. Henderson, G. J. Leigh and C. J. Pickett, Adv. Inorg. Radiochem., 1983, 27, 197 Search PubMed; C. J. Pickett, M.-L. Abasq and S. K. Ibrahim, in Novel Trends in Electroorganic Synthesis, ed. S. Torii, Kondansha, Japan, 1995, pp. 231–234 Search PubMed; C. J. Pickett, in Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds, eds. A. J. L. Pombeiro and J. A. McCleverty, NATO ASI Series C, 1993, vol. 385, pp. 357–380 Search PubMed.
  4. Y. Ishii, H. Miyagi, S. Jitsukuni, H. Seino, B. S. Harkness and M. Hidai, J. Am. Chem. Soc., 1992, 114, 9890 CrossRef CAS.
  5. H. Seino, Y. Ishii and M. Hidai, J. Am. Chem. Soc., 1994, 116, 7433 CrossRef CAS.
  6. S. A. Fairhurst, D. L. Hughes, S. K. Ibrahim, M.-L. Abasq, J. Talarmin, M. A. Queiros, A. Fonseca and C. J. Pickett, J. Chem. Soc., Dalton Trans., 1995, 1873 RSC.
  7. G. E. Bossard, T. A. George, R. K. Lester, R. C. Tisdale and R. L. Turcotte, Inorg. Chem., 1985, 24, 1129 CrossRef CAS.
  8. T. Yoshida, T. Adachi, M. Kaminaka and T. Ueda, J. Am. Chem. Soc., 1988, 110, 4872 CrossRef CAS.
  9. W. Hussain, G. J. Leigh and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1982, 747 RSC; R. A. Henderson, G. J. Leigh and C. J. Pickett, J. Chem. Soc., Dalton Trans., 1989, 425 RSC; D. L. Hughes, D. J. Lowe, C. J. Macdonald, M. Y. Mohammed and C. J. Pickett, Polyhedron, 1989, 8, 1653 CrossRef CAS; D. L. Hughes, M. Y. Mohammed and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1989, 1399 RSC; J. Chem. Soc., Dalton Trans., 1990, 2013 Search PubMed; A. Hills, D. L. Hughes, C. J. Macdonald, M. Y. Mohammed and C. J. Pickett, J. Chem. Soc., Dalton Trans., 1991, 121 Search PubMed; R. A. Henderson, S. K. Ibrahim and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1993, 392 RSC.
  10. D. L. Hughes, S. K. Ibrahim, C. J. Macdonald, H. Moh'd Ali and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1992, 1762 RSC.
  11. D. L. Hughes, M. Y. Mohammed and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1988, 1119 RSC.
  12. C. J. Pickett, JBIC, 1996, 1, 606 CrossRef CAS.
  13. V. V. Strelets and C. J. Pickett, Elektrokhimiya, 1994, 30, 1023 Search PubMed.
  14. W. E. Geiger, P. H. Reiger, B. Tulyathan and M. D. Rausch, J. Am. Chem. Soc., 1984, 106, 7000 CrossRef CAS.
  15. G. S. Alberts and I. Shain, Anal. Chem., 1963, 35, 1859 CrossRef CAS; A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980, p. 462 Search PubMed.
  16. (a) M. Rudolph and S. W. Feldberg, DIGISIM 2.0, Bioanalytical Systems Inc., West Lafayette, IN, 1994; (b) T. Adachi, D. L. Hughes, S. K. Ibrahim, S. Okamoto, C. J. Pickett, N. Yabanouchi and T. Yoshida, J. Chem. Soc., Chem. Commun., 1995, 1081 RSC.
  17. D. L. Hughes, S. K. Ibrahim, H. Moh'd Ali and C. J. Pickett, J. Chem. Soc., Chem. Commun., 1994, 425 RSC.
  18. K.-Y. Shih, K. Totland, S. W. Siedel and R. R. Schrock, J. Am. Chem. Soc., 1994, 116, 121 03 CrossRef.
  19. T. I. Al-Salih and C. J. Pickett, J. Chem. Soc., Dalton Trans., 1985, 1255 RSC.
  20. P. C. Bevan, J. Chatt, J. R. Dilworth, R. A. Henderson and G. J. Leigh, J. Chem. Soc., Dalton Trans., 1982, 821 RSC.
  21. J. Chatt and J. R. Dilworth, J. Chem. Soc., Chem. Commun., 1975, 983 RSC; J. Indian Chem. Soc., 1977, 54, 13 Search PubMed.
  22. R. A. Henderson and K. Oglieve, J. Chem. Soc., Dalton Trans., 1996, 3397 RSC.
  23. C. J. Pickett, K. S. Ryder and J. Talarmin, J. Chem. Soc., Dalton Trans., 1986, 1453 RSC.
  24. D. T. Dubin, J. Biol. Chem., 1960, 235, 783 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.