The quest for mixed-metal oxide precursors based on bismuth: synthesis and molecular structure of BiTi23-O)(µ-OPri)4(OPri)5 and [Bi2(µ-OPri)2(OPri)2(acac)2] (acac = acetylacetonate)[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Stéphane Parola, Renée Papiernik, Liliane G. Hubert-Pfalzgraf, Susan Jagner and Mikael Hkansson


Abstract

Various routes to mixed-metal Bi–Ti species were investigated. Various heterometallic alkoxides could be isolated by using hydrolysis reactions. The mixed-metal alkoxide BiTi23-O)(µ-OPri)4(OPri)5 was obtained by reaction between titanium isopropoxide and a bismuth oxoisopropoxide formed in situ by controlled microhydrolysis and subsequent alcoholysis of Bi(OBut)3. It was characterised by X-ray crystallography, 1H NMR and Fourier-transform IR spectroscopy. The structure is based on an isosceles triangular framework with a central triply bridging oxo ligand. Bismuth is four-co-ordinate with a stereochemically active lone pair. The titanium atoms are six-co-ordinate with a severely distorted octahedral environment. Synthesis and characterisation of the bismuth–titanium ethoxides BiTi2O(OEt)9 and Bi4Ti3O4(OEt)16 were achieved, as well as their evaluation as oxide precursors. The latter leads, after complete hydrolysis and thermal treatment at 450 °C, to the pure crystalline Bi4Ti3O12 perovskite phase. The synthesis and structural characterisation of [Bi2(µ-OPri)2(OPri)22-acac)2] (acac = acetylacetonate) are also reported. The basic structural unit is a dimer in which the five-co-ordinated metals are linked by dissymmetrical Bi–OR bridges. Each β-diketonate is chelating one metal. Chains of dimers run along the c axis via terminal semibridging isopropoxide ligands, ensuring six-co-ordination for the bismuth atoms.


References

  1. S. L. Swartz and V. E. Wood, Condensed Matter News, 1992, 1, 4 Search PubMed; F. M. Ross, K. M. Krishnan, N. Thangaraj, R. F. C. Farrow, R. F. Marks, A. Cebollada, S. S. P. Parkin, M. F. Toney, M. Huffman, C. A. Paz De Araujo, L. D. Mc Millan, J. Cuchiaro, M. C. Scott, C. Echer, F. Ponce, M. A. O'Keefe and F. C. Nelson, Mater. Res. Soc. Bull., 1996, 21, 17 Search PubMed.
  2. K. G. Caulton and L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90, 969 CrossRef CAS.
  3. M. Veith, E. C. Yu and V. Huch, Chem. Eur. J., 1995, 1, 27.
  4. C. M. Jones, M. D. Burkart and K. H. Whitmire, J. Chem. Soc., Chem. Commun., 1992, 1638 RSC.
  5. K. H. Whitmire, C. M. Jones, M. D. Burkart, J. C. Hutchinson and A. L. McKnight, Mater. Res. Soc. Proc., 1992, 271, 149 CAS.
  6. J. W. Pell, W. C. Davis and H. C. zur Loye, Inorg. Chem., 1996, 35, 5734.
  7. R. Papiernik, L. G. Hubert-Pfalzgraf, S. Parola, S. Jagner, F. Soares-Carvalho, P. Thomas and J. P. Mercurio, Better Ceramics through Chemistry VI (Mater. Res. Soc. Proc., Pittsburgh), 1994, 346, 285 Search PubMed; L. G. Hubert-Pfalzgraf, S. Parola, R. Papiernik, S. Jagner and J. P. Mercurio, 210th American Chemical Society Meeting, Chicago, 1995, INOR 039.
  8. L. G. Hubert-Pfalzgraf, Polyhedron, 1994, 13, 1181 CrossRef.
  9. N. Ya. Turova, personal communication.
  10. N. N. Sauer, E. Garcia and R. Ryan, Mater. Res. Soc. Symp. Proc., 1990, 180, 921 CAS.
  11. S. C. James, N. C. Norman, A. G. Orpen, M. J. Quayle and U. Weckenmann, J. Chem. Soc., Dalton Trans., 1996, 4159 RSC.
  12. S. Daniele, L. G. Hubert-Pfalzgraf, J. C. Daran and S. Hault, Polyhedron, 1994, 13, 927 CrossRef CAS.
  13. S. Boulmaaz, R. Papiernik, L. G. Hubert-Pfalzgraf, J. C. Daran and J. Vaissermann, Chem. Mater., 1991, 3, 779 CrossRef CAS.
  14. S. Boulmaaz, R. Papiernik, L. G. Hubert-Pfalzgraf and J. C. Daran, Eur. J. Solid State Inorg. Chem., 1993, 30, 583 CAS.
  15. E. P. Turevskaya, D. V. Berdiev, N. Ya. Turova, Z. A. Starikova, A. I. Yanovsky, Y. T. Struchkov and A. I. Belokon, Polyhedron, 1997, 16, 663 CrossRef CAS.
  16. W. J. Evans, T. J. Deming, J. M. Olofson and J. W. Ziller, Inorg. Chem., 1989, 28, 4027 CrossRef CAS.
  17. M. Veith, S. Mathur and V. Huch, Inorg. Chem., 1997, 36, 2391 CrossRef CAS.
  18. M. H. Chisholm, K. Folting, J. C. Huffman and C. C. Kirkpatrick, J. Chem. Soc., Chem. Commun., 1982, 189 RSC.
  19. M. C. Massiani, R. Papiernik, L. G. Hubert-Pfalzgraf and J. C. Daran, J. Chem. Soc., Chem. Commun., 1990, 301 RSC; Polyhedron, 1991, 10, 437 Search PubMed; M. A. Matchett, M. Y. Chiang and W. E. Buhro, Inorg. Chem., 1990, 29, 358 Search PubMed.
  20. C. M. Jones, M. D. Burkart and K. H. Whitmire, Angew Chem., Int. Ed. Engl., 1992, 31, 451.
  21. F. Soares-Carvalho, P. Thomas, J. P. Mercurio, B. Frit and S. Parola, J. Sol-Gel Sci. Technol., 1997, 8, 759 Search PubMed.
  22. P. C. Joshi, A. Mansingh, M. N. Kamalasanan and S. Chandra, Appl. Phys. Lett., 1991, 59, 2389 CrossRef CAS; N. Tohge, Y. Fuyuda and T. Minami, Jpn. J. Appl. Phys., Part 1, 1992, 31, 4016 Search PubMed; M. Toyoda, Y. Hamaji, K. Tomono and D. A. Payne, Jpn. J. Appl. Phys., Part 1, 1993, 32, 4158 Search PubMed.
  23. M. Håkansson, Ph.D. Thesis, Chalmers Vniversity of Technology, Göteborg, 1990; Inorg. Synth., in the press Search PubMed.
  24. C. J. Gilmore, MITHRIL, J. Appl. Crystallogr., 1984, 17.
  25. TEXSAN-TEXRAY, Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985.
Click here to see how this site uses Cookies. View our privacy policy here.