The templated synthesis and structure determination by synchrotron microcrystal diffraction of the novel small pore magnesium aluminophosphate STA-2[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Graham W. Noble, Paul A. Wright and Åke Kvick


Abstract

A novel microporous aluminophosphate, STA-2, has been prepared by hydrothermal synthesis in the presence of the rationally designed template, [(C7H13N)(CH2)4(NC7H13)]2+ and in the absence and presence of sodium ions. Using sodium ions in the preparation results in the synthesis of crystals of STA-2 up to 50 µm in dimension, of sufficient quality to be studied by the new technique of microcrystal diffraction at a synchrotron X-ray source and with an area detector. Phase STA-2 is found to have symmetry R[3 with combining macron], a = 12.726(2), c = 30.939(6) Å at 200 K. Structure solution reveals it to be a small pore solid of the family of structural polytypes made up by the stacking of six-membered Al3P3O6 rings, and possesses the most complex regular stacking sequence of any such structure known, which can be represented as ABAACACCBCBB in the usual convention. The stacking sequence is controlled by the size and shape of the templating molecule, the position of which, determined from the single-crystal diffraction, makes a close fit with the organic framework. Compound STA-2 is stable to thermal removal of the template molecule and has potential as a solid acid catalyst.


References

  1. W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types(Zeolites, 1996, 17), Elsevier, London, 4th edn., 1996 Search PubMed.
  2. D. E. Akporiaye, H. Fjellvag, E. N. Halvorsen, T. Haug and A. Karlsson, Chem. Commun., 1996, 1553 RSC.
  3. G. W. Noble, P. A. Wright, P. Lightfoot, R. E. Morris, K. J. Hudson, Å. Kvick and H. Graafsma, Angew. Chem., Int. Ed. Engl., 1997, 36, 81 CrossRef CAS.
  4. P. A. Wright, C. Sayag, F. Rey, D. W. Lewis, J. D. Gale, S. Natarajan and J. M. Thomas, J. Chem. Soc., Faraday Trans., 1995, 91, 3537 RSC.
  5. M. Helliwell, V. Kaucic, G. M. T. Cheetham, M. M. Harding, B. M. Kariuki and P. J. Rizkallah, Acta Crystallogr., Sect. B, 1993, 49, 413 CrossRef.
  6. G. M. T. Cheetham and M. M. Harding, Zeolites, 1996, 16, 245 CrossRef CAS.
  7. M. J. Gray, J. D. Jasper, A. P. Wilkinson and J. C. Hanson, Chem. Mater., 1997, 9, 976 CrossRef CAS.
  8. Å. Kvick and M. Wulff, Rev. Sci. Instrum., 1992, 62, 1073 CrossRef.
  9. M. Krumrey, Å. Kvick and W. Schwegle, ibid, 1994, 66, 1715 Search PubMed.
  10. G. M. Sheldrick, SHELXTL, version 5.03, Program for the solution of crystal structures, University of Göttingen, 1993.
  11. TEXSAN, Single Crystal Analysis Software, Version 1.6, Molecular Structure Corporation, The Woodlands, Houston TX, 1993.
  12. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  13. G. R. Millward, S. Ramdas and J. M. Thomas, Proc. R. Soc. London, Ser. A, 1985, 399, 57 CAS.
  14. R. Szostak and K. P. Lillerud, J. Chem. Soc., Chem. Commun., 1994, 2357 RSC.
  15. R. F. Lobo, S. I. Zones and R. C. Medrud, Chem. Mater., 1996, 8, 2409 CrossRef CAS.
  16. D. W. Lewis, D. J. Willock, C. R. A. Catlow, J. M. Thomas and G. J. Hutchings, Nature (London), 1996, 382, 604 CrossRef CAS.
  17. C.-Y. Chen, L. W. Finger, R. C. Medrud, P. A. Crozier, I. Y. Chan, T. V. Harris and S. I. Zones, Chem. Commun., 1997, 1775 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.