The synthesis, structure and nuclear magnetic resonance properties of some titanium relatives of Amavadin: [Δ-Ti(R,R-hidpa)2]2–, [Δ,Λ-Ti(R,R-hidpa)2]2– and [Δ,Λ-Ti(hida)2]2– [H3hidpa = 2,2′-(hydroxyimino)dipropionic acid, H3hida = N-hydroxyiminodiacetic acid]

(Note: The full text of this document is currently only available in the PDF Version )

Spencer M. Harben, Paul D. Smith, Madeleine Helliwell, David Collison and C. David Garner


Abstract

The compound [TiO(acac)2] (acac = acetylacetonate) reacts with N-hydroxyiminodiacetic acid (H3hida) or (R,R)-2,2′-(hydroxyimino)dipropionic acid (R,R-H3hidpa) to yield [Ti(hida)2]2– or [Ti(R,R-hidpa)2]2–, respectively. The anion [Ti(R,R-hidpa)2]2– has been obtained from H2O in the presence of Ca2+ as [Ca(H2O)4][Ca(H2O)5]3[Δ-Ti(R,R-hidpa)2]4·2H2O 3 which crystallises in the space group P21 (no. 4) with a = 14.258(2), b = 16.516(3), c = 19.169(3) Å, β = 110.907(9)°; least-squares refinement of 6082 reflections and 1126 variables converged with agreement factors of R = 0.069 and R′ = 0.054. The anions possess the co-ordination geometry identified for other Amavadin-style complexes, viz. eight-co-ordination achieved by the ligation of two mutually trans and staggered η2-NO groups and four unidentate carboxylate oxygen atoms; Ti–N(NO) 2.04(1)–2.10(1), Ti–O(NO) 1.962(9)–2.001(9), Ti–O(CO2) 2.024(9)–2.100(9), N–O 1.38(1)–1.44(1) Å. The lattice of compound 3 comprises of parallel zigzag strands of alternating [Δ-Ti(R,R-hidpa)2]2– and [Ca(H2O)x]2+ (x = 4 or 5) linked interstrand by CaII binding to carboxylato-oxygen atoms and intra- and inter-strand by hydrogen bonding from the H2O molecules to the oxygen atoms of the anions. The anions are obtained exclusively in the Δ-helical form and this has enabled 1H and 13C NMR studies to follow epimerisation at the TiIV centre to produce a mixture of the Δ- and Λ-helical forms. Carbon-13 NMR spectroscopy has been used to investigate the interaction of the carboxylato groups of [Ti(hida)2]2– with solvents.


References

  1. H. U. Meisch, W. Reinle and J. A. Schmitt, Naturwissenchaften, 1979, 66, 620 Search PubMed.
  2. H. Kneifel and E. Bayer, J. Am. Chem. Soc., 1986, 108, 3075 CrossRef CAS.
  3. E. M. Armstrong, R. L. Beddoes, L. J. Calviou, J. M. Charnock, D. Collison, N. Ertok, J. H. Naismith and C. D. Garner, J. Am. Chem. Soc., 1993, 115, 807 CrossRef CAS.
  4. S. N. Ertok, Ph.D. Thesis, The University of Manchester, 1993.
  5. E. M. Armstrong, M. S. Austerberry, R. L. Beddoes, R. E. Berry, D. Collison, S. N. Ertok, M. Helliwell and C. D. Garner, unpublished work.
  6. R. D. Gillard and R. J. Lancashire, Phytochemistry, 1983, 23, 179 CrossRef CAS.
  7. M. A. Nawi and T. L. Riechel, Inorg. Chim. Acta, 1987, 136, 33 CrossRef CAS.
  8. M. A. A. F. de C. T. Carrondo, M. T. L. S. Duarte, J. C. Pessoa, J. A. L. Silva, J. J. R. Fraústo da Silva, M. C. T. A. Vaz and F. L. Vilas-Boas, J. Chem. Soc., Chem. Commun., 1988, 1158 RSC.
  9. H. S. Yadav, R. L. Beddoes, D. Collison and C. D. Garner, J. Chem. Soc., Chem. Commun., 1994, 605 RSC.
  10. P. D. Smith, E. J. L. McInnes, R. L. Beddoes, D. Collison, J. J. A. Cooney, S. M. Harben, M. Helliwell, F. E. Mabbs, A. K. Powell and C. D. Garner, unpublished work.
  11. P. D. Smith, S. M. Harben, R. L. Beddoes, M. Helliwell, D. Collison and C. D. Garner, J. Chem. Soc., Dalton Trans., 1997, 685 RSC.
  12. S. M. Harben, P. D. Smith, R. L. Beddoes, D. Collison and C. D. Garner, Angew. Chem., Int. Ed. Engl., 1997, 36, 1897 CrossRef CAS.
  13. S. M. Harben, P. D. Smith, R. L. Beddoes, D. Collison and C. D. Garner, J. Chem. Soc., Dalton Trans., 1997, 2777 RSC.
  14. P. D. Smith, R. E. Berry, S. M. Harben, R. L. Beddoes, M. Helliwell, D. Collison and C. D. Garner, preceding paper.
  15. E. Koch, H. Kneifel and E. Bayer, Z. Naturforsch., Teil B, 1986, 41, 359 Search PubMed; G. Anderegg, E. Koch and E. Bayer, Inorg. Chim. Acta, 1987, 127, 183 CrossRef CAS.
  16. G. M. Sheldrick, SHELXS 86, Crystallographic Computing 3, eds. G. M. Sheldrick, C. Krueger and R. Goddard, Oxford University Press, 1986 Search PubMed; P. T. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, DIRDIF 94, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1994.
  17. TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985 and 1992.
  18. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  19. S. F. Pedersen, J. C. Dewan, R. R. Eckerman and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 1279 CrossRef CAS.
  20. U. Thewalt and R. Friedrich, Z. Naturforsch., Teil B, 1991, 46, 475 CAS.
  21. K. Wieghardt, I. Tolksdorf, J. Weiss and W. Swiridoff, Z. Anorg. Allg. Chem., 1982, 490, 182 CrossRef CAS.
  22. F. H. Allen and O. Kennard, Chem. Des. Autom. News, 1993, 8, 31 Search PubMed.
  23. I. M. Bezrukavnikova, T. N. Polynova, M. A. Porai-Koshits, I. B. Kovaleva and N. D. Mitrofanova, Koord. Khim., 1991, 17, 770 Search PubMed.
  24. J. Garcia-Jaca, T. Rojo, J. L. Pizarro, A. Goni and M. I. Arriortua, J. Coord. Chem., 1993, 30, 327 CAS.
  25. WIN-NMR simulation program, version 940701.0, Bruker Franzen Analytik, Karlsruhe.
Click here to see how this site uses Cookies. View our privacy policy here.