Dinuclear iron(III)–metal(II) complexes as structural core models for purple acid phosphatases[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Morten Ghiladi, Christine J. McKenzie, Anke Meier, Annie K. Powell, Jens Ulstrup and Sigrid Wocadlo


Abstract

A series of mixed-valent iron and mixed-metal FeIII–MII (M = Zn, Cu, Ni or Co) complexes of the phenolate-hinged dinucleating ligand 2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-tert-butylphenolato(1–), bpbp have been prepared and characterized. Both exogenous bidentate bridging groups and different terminal ligands bound to each different metal ion at the exogenous site were identified. The structure of the mixed-valence complex [(bpbp)Fe2(F)2(H2O)2][BF4]2 confirms that it is a rare example of a dimetallic complex of a single-atom hinged acyclic dinucleating ligand with a ‘non-bridged’ arrangement at the exogenous bridging site. Mössbauer spectroscopy indicates valence trapping in this complex with the parameters, ΔEQ 3.242 mm s–1, δ 1.169 mm s–1 and ΔEQ 0.221 mm s–1, δ 0.460 mm s–1, respectively for the high spin Fe2+ and high spin Fe3+ ions. Crystals of [(bpbp)Fe2(F)2(H2O)2][BF4]2·4H2O are triclinic, space group P[1 with combining macron] (no. 2), with a = 12.695(1), b = 19.197(2), c = 10.202(1) Å, α = 102.95(1), β = 97.61(1), γ = 93.76(1)°, Z = 2. The structure was refined to R = 0.1009 on F using 4338 reflections with I > 2σ(I) (wR2 on all data and F[hair space] 2 = 0.3522). The FeII and FeIII atoms are bridged asymmetrically by the phenolic oxygen atom of bpbp with FeII–O 2.175(6) Å and FeIII–O 2.033(6) Å with a FeIII · · · FeII distance of 3.726(2) Å. The two terminal fluoride ions are bound to the FeIII atom and strongly hydrogen bonded to two water molecules bound to the adjacent FeII atom. This complex may model the mode in which fluoride ions bind to the active site of the purple acid phosphatases (PAPs) thereby inhibiting the activity of these enzymes. Tetrahedral oxo anions are known also to inhibit PAPs and to mimic this inhibition a FeIII–ZnII complex incorporating molybdate bridging groups was prepared. Crystals of [(bpbp)FeZn(MoO4)2]·C3H7OH· 2H2O are monoclinic, space group P21/n with a = 11.773(13), b = 21.394(7), c = 17.001(11) Å and β = 90.98(7)°, Z = 4. The structure was refined to R = 0.0434 on F using 3758 reflections with I > 2σ(I) (wR2 on all data and F[hair space] 2 = 0.1339). The FeIII · · · ZnII distance is 3.819(4) Å. A series of acetate-bridged complexes were prepared by the novel method of diffusing ethyl acetate or isopropyl acetate into mixtures of Hbpbp and iron perchlorate in the presence and absence of a second type of metal ion. The acetate bridging groups are the result of the hydrolysis of the alkyl acetate. These complexes have the general formulation [(bpbp)FeM(CH3CO2)2][ClO4]2. Crystals of [(bpbp)FeCu(CH3CO2)2][ClO4]2·0.5CH3OH are monoclinic, space group P21/n


References

  1. H.-R. Chang, S. K. Larsen, P. D. W. Boyd, C. G. Pierpont and D. N. Hendrickson, J. Am. Chem. Soc., 1988, 110, 4565 CrossRef CAS; C. Fraser, L. Johnston, A. L. Rheingold, B. S. Haggerty, G. K. Williams, J. Whelan and B. Bosnich, Inorg. Chem., 1992, 31, 1835 CrossRef CAS.
  2. (a) M. Suzuki, M. Mikuriya, S. Murata, A. Uehara and H. Oshio, Bull. Chem. Soc. Jpn., 1987, 60, 4305 CAS; (b) A. S. Borovik and L. Que, jun., J. Am. Chem. Soc., 1988, 110, 2345 CrossRef CAS; (c) H. Diril, H.-R. Chang, M. J. Nilges, X. Zhang, J. A. Potenza, H. J. Schugar, D. N. Hendrickson and S. S. Isied, J. Am. Chem. Soc., 1988, 110, 625 CrossRef CAS; (d) R. M. Buchanan, K. J. Oberhausen and J. F. Richardson, Inorg. Chem., 1988, 27, 971 CrossRef CAS; (e) H. Diril, H.-R. Chang, M. J. Nilges, X. Zhang, J. A. Potenza, H. J. Schugar, S. S. Isied and D. N. Hendrickson, J. Am. Chem. Soc., 1988, 111, 5102; (f) A. S. Borovik, V. Papaefthymiou, L. F. Taylor, O. P. Anderson and L. Que, jun., J. Am. Chem. Soc., 1989, 111, 6183 CrossRef CAS; (g) T. R. Holman, C. Juarez-Garcia, M. P. Hendrich, L. Que, jun. and E. Münck, J. Am. Chem. Soc., 1990, 112, 7611 CrossRef CAS; (h) M. S. Mashuta, R. J. Webb, J. K. McCusker, E. A. Schmitt, K. J. Oberhausen, J. F. Richardson, R. M. Buchanan and D. N. Hendrickson, J. Am. Chem. Soc., 1992, 114, 3815 CrossRef CAS; (i) W. Kanda, W. Moneta, M. Bardet, E. Bernard, N. Debaecker, J. Laugier, A. Boussekou, S. Chardon-Noblat and J.-M. Latour, Angew. Chem., Int. Ed. Engl., 1995, 34, 588 CrossRef CAS; (j) A. Neves, M. A. de Brito, I. Vencato, V. Drago, K. Griesar and W. Haase, Inorg. Chem., 1996, 35, 2360 CrossRef CAS; (k) A. Hazell, C. J. McKenzie, B. Moubaraki and K. Murray, Acta Chem. Scand., 1997, 51, 470 CAS.
  3. (a) N. Sträter, T. Klabunde, P. T. Tucker, H. Witzel and B. Krebs, Science, 1995, 268, 1489 CAS; (b) T. Klabunde, N. Sträter, R. Frölich, H. Witzel and B. Krebs, J. Mol. Biol., 1996, 259, 737 CrossRef CAS.
  4. A. Hazell, K. B. Jensen, C. J. McKenzie and H. Toftlund, Inorg. Chem., 1994, 33, 3127 CrossRef CAS.
  5. D. R. Jones, L. F. Lindoy and A. M. Sargeson, J. Am. Chem. Soc., 1984, 106, 7807 CrossRef CAS; P. Hendry and A. M. Sargeson, Prog. Inorg. Chem., 1990, 38, 201 CAS; J. Chin, Acc. Chem. Res., 1991, 24, 145 CrossRef CAS.
  6. Y. Dong, H. Fujii, M. P. Hendrich, R. A. Leising, G. Pan, C. R. Randall, E. C. Wilkinson, Y. Zang, L. Que, jun., B. G. Fox, K. Kauffman and E. Münck, J. Am. Chem. Soc., 1995, 117, 2778 CrossRef CAS; K. D. Hodges, R. G. Wollman, S. L. Kessel, D. N. Hendrickson, D. G. VanDerveer and E. K. Barefield, J. Am. Chem. Soc., 1979, 101, 906 CrossRef CAS; J. W. Buchler, K. L. Lay, Y. J. Lee and W. R. Scheidt, Angew. Chem., Int. Ed. Engl., 1982, 21, 432 CrossRef.
  7. M. J. Young and J. Chin, J. Am. Chem. Soc., 1995, 117, 10 577 CrossRef CAS; N. N. Murthy, M. Mahroof-Tahir and K. D. Karlin, J. Am. Chem. Soc., 1993, 115, 10 404 CrossRef CAS.
  8. W. H. Chapman, jun. and R. Breslow, J. Am. Chem. Soc., 1995, 117, 5462 CrossRef; M. Yashiro, A. Ishikubo and M. Komiyama, J. Chem. Soc., Chem. Commun., 1995, 1793 RSC.
  9. C. J. McKenzie and R. Robson, J. Chem. Soc., Chem. Commun., 1988, 112 RSC.
  10. A. Tsubouchi and T. C. Bruice, J. Am. Chem. Soc., 1994, 116, 11 614 CrossRef CAS.
  11. N. Sträter, W. N. Lipscomb, T. Klabunde and B. Krebs, Angew. Chem., Int. Ed. Engl., 1996, 35, 2024 CrossRef; B. A. Averill, Biochemistry, 1992, 31, 3033 CrossRef; J. B. Vincent, M. W. Crowder and B. A. Averill, TIBS, 1992, 17, 105 Search PubMed.
  12. J. E. Coleman, Annu. Rev. Biophys. Biomol. Struct., 1992, 21, 441 CrossRef CAS.
  13. N. E. Dixon, P. W. Riddles, C. Gazzola, R. L. Blakeley and B. Zerner, Can. J. Biochem., 1980, 58, 1335 CAS.
  14. J. S. Seo, N.-D. Sung, R. C. Hynes and J. Chin, Inorg. Chem., 1996, 35, 7472 CrossRef CAS.
  15. (a) J. C. Davis, S. S. Lin and B. A. Averill, Biochemistry, 1981, 20, 4062 CrossRef CAS; (b) J. B. Vincent, M. W. Crowder and B. A. Averill, Biochemistry, 1991, 30, 3025 CrossRef CAS.
  16. B. F. Hoskins, C. J. McKenzie, R. Robson and L. Zhenrong, J. Chem. Soc., Dalton Trans., 1990, 2637 RSC.
  17. W. R. Heineman, B. J. Norris and J. F. Goelz, Anal. Chem., 1975, 47, 79 CrossRef CAS.
  18. H. B. Gray, personal communication.
  19. G. M. Sheldrick, SHELXTL PLUS, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1990.
  20. G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
  21. J. Reedijk, Comments Inorg. Chem., 1982, 1, 379 CrossRef CAS; J. Reedijk and R. W. M. ten Hoedt, Recl. Trav. Chim. Pays-Bas, 1982, 101, 49 CAS; F. S. Keij, R. A. G. de Graaff, J. G. Haasnoot, A. J. Oosterling, E. Pedersen and J. Reedijk, J. Chem. Soc., Chem. Commun., 1988, 423 RSC.
  22. M. W. Crowder, J. B. Vincent and B. A. Averill, Biochemistry, 1992, 31, 9603 CrossRef CAS.
  23. C. Belle, I. Gautier-Luneau, J.-L. Pierre, C. Scheer and E. Saint-Aman, Inorg. Chem., 1996, 35, 3706 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.