Tris(carboxymethyl)oxatriazamacrocycles and their metal complexes[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Sílvia Chaves, Ana Cerva and Rita Delgado


Abstract

The protonation constants of H3L1 [4,8,12-tris(carboxymethyl)-1-oxa-4,8,12-triazacyclotetradecane] and of H3L2 [4,7,11-tris(carboxymethyl)-1-oxa-4,7,11-triazacyclotridecane] and the stability constants of the complexes formed by both with alkaline-earth metal ions, divalent first-row transition-metal ions, Cd2+, Pb2+ and Fe3+ were determined by potentiometric methods, at 25 °C and ionic strength 0.10 mol dm–3 in tetramethylammonium nitrate. The co-ordination properties of both ligands for alkaline-earth and divalent first-row transition-metal ions are quite different. The 13-membered macrocycle, (L2)3–, exhibits fairly high stability constants but unsatisfactory selectivity with the first-row transition-metal ions. The 14-membered ligand, (L1)3–, is very selective for the same series of metal ions, the difference in stability between its complexes of Cu2+ and Mn2+ being 10.96 log units and that of the complexes of Cu2+ and Zn2+ 7.29 log units, the constant of the complex of Mn2+ is sufficiently high for its possible quantitative determination by (L1)3–, at pH values higher than 7. However, the metal complexation behaviour of the (L1)3– is similar to that of the corresponding bis(carboxymethyl) derivative, therefore the difficult preparation of H3L1 does not compensate the benefits. Increase in size of the macrocycle cavity leads to a sharp decrease in stability of complexes of metal ions involved mainly in electrostatic interactions (the alkaline-earth metal ions, Mn2+ and Pb2+). Cobalt(II) complexes also undergo a significant decrease in stability with increase in cavity size and the constant for [ZnL1] is much lower than that of [ZnL2]. However, the complexes of Cu2+ and Ni2+ with both macrocycles have about the same values of the stability constants. To explain these results it is proposed that all the donor atoms of the ligands are involved in co-ordination to metal ions which form complexes mainly by electrostatic interactions, although the distances and principally the orientation of the lone pairs of electrons are gradually more disfavoured for co-ordination with increasing cavity size. Complexes of the first-row transition-metal ions undergo the same effects, each being able to choose the donor atoms from the ligands most appropriate for their strict co-ordination preferences. So Co2+, Ni2+ and Cu2+ adopt five- or six-co-ordination with these potentially seven-co-ordinate ligands, as shown by electronic and EPR spectroscopic measurements in solution and the magnetic moments of the complexes.


References

  1. M. T. S. Amorim, R. Delgado, J. J. R. Fraústo da Silva, M. C. T. A. Vaz and M. F. Vilhena, Talanta, 1988, 35, 741 CrossRef CAS.
  2. M. T. S. Amorim, R. Delgado and J. J. R. Fraústo da Silva, Polyhedron, 1992, 11, 1891 CrossRef CAS.
  3. S. Chaves, R. Delgado, M. T. Duarte, J. A. L. Silva, V. Felix and M. A. F. de C. T. Carrondo, J. Chem. Soc., Dalton Trans., 1992, 2579 RSC.
  4. R. Delgado and J. J. R. Fraústo da Silva, Talanta, 1982, 29, 815 CrossRef CAS.
  5. S. Chaves, R. Delgado and J. J. R. Fraústo da Silva, Talanta, 1992, 39, 249 CrossRef CAS.
  6. S. Chaves, A. Cerva and R. Delgado, Polyhedron, 1997, in the press Search PubMed.
  7. R. Delgado, S. Quintino, M. Texeira and A. Zhang, J. Chem. Soc., Dalton Trans., 1997, 55 RSC.
  8. J. Costa, R. Delgado, M. C. Figueira, R. T. Henriques and M. Teixeira, J. Chem. Soc., Dalton Trans., 1997, 65 RSC.
  9. R. Delgado, J. J. R. Fraústo da Silva and M. C. T. A. Vaz, Inorg. Chim. Acta, 1984, 90, 185 CrossRef CAS.
  10. R. Izatt, K. Pawlak, J. S. Bradshaw and R. L. Bruening, Chem. Rev., 1995, 95, 2592.
  11. M. T. S. Amorim, S. Chaves, R. Delgado and J. J. R. Fraústo da Silva, J. Chem. Soc., Dalton Trans., 1991, 3065 RSC.
  12. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, 3rd edn., Pergamon, Oxford, 1988 Search PubMed.
  13. G. Schwarzenbach and W. Biederman, Helv. Chim. Acta, 1948, 31, 331 CrossRef CAS.
  14. L. Pehrsson, F. Ingman and A. Johansson, Talanta, 1976, 23, 769 CrossRef CAS.
  15. P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1985, 1195 RSC.
  16. D. J. Leggett and W. A. E. McBryde, Anal. Chem., 1975, 47, 1065 CrossRef CAS; D. J. Leggett, Anal. Chem., 1978, 50, 718 CrossRef CAS.
  17. R. Delgado, Y. Sun, R. J. Motekaitis and A. E. Martell, Inorg. Chem., 1993, 32, 3320 CrossRef CAS.
  18. R. Delgado, J. J. R. Fraústo da Silva, M. T. S. Amorim, M. F. Cabral, S. Chaves and J. Costa, Anal. Chim. Acta, 1991, 245, 271 CrossRef CAS.
  19. D. F. Evans, J. Chem. Soc., 1959, 2003 RSC.
  20. F. Neese, Diploma Thesis, University of Konstanz, June 1993.
  21. K. P. Balakrishnan, H. A. A. Omar, P. Moore, N. W. Alcock and G. A. Pike, J. Chem. Soc., Dalton Trans., 1990, 2965 RSC.
  22. M. T. S. Amorim, J. R. Ascenso, R. Delgado and J. J. R. Fraústo da Silva, J. Chem. Soc., Dalton Trans., 1990, 3449 RSC.
  23. A. Bianchi, M. Micheloni and P. Paoletti, Coord. Chem. Rev., 1991, 110, 17 CrossRef CAS.
  24. P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem., 1987, 35, 329.
  25. M.-R. Spirlet, J. Rebizant, P. P. Barthélemy and J. F. Desreux, J. Chem. Soc., Dalton Trans., 1991, 2477 RSC.
  26. M. R. Maurya, E. J. Zaluzec, S. F. Pavkovic and A. W. Herlinger, Inorg. Chem., 1991, 30, 3657 CrossRef CAS.
  27. M. T. Amorim, Doctorate Thesis, IST, Lisbon, 1993.
  28. T. A. Kaden, Adv. Supramol. Chem., 1993, 3, 65 Search PubMed and refs. therein.
  29. M. F. Cabral, J. Costa, R. Delgado, J. J. R. Fraústo da Silva and M. F. Vilhena, Polyhedron, 1990, 9, 2847 CrossRef CAS.
  30. V. Félix, R. Delgado, M. T. S. Amorim, S. Chaves, A. M. Galvão, M. T. Duarte, M. A. A. F. C. T. Carrondo, I. Moura and J. J. R. Fraústo da Silva, J. Chem. Soc., Dalton Trans., 1994, 3099 RSC.
  31. I. Bertini and C. Luchinat, Adv. Inorg. Biochem., 1984, 6, 71 Search PubMed.
  32. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd edn., Elsevier, Amsterdam, 1984 Search PubMed.
  33. R. L. Carlin, Transition Met. Chem., 1965, 1, 1 CAS.
  34. L. Sacconi, F. Mani and A. Bencini, Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 5, pp. 1–137 Search PubMed.
  35. M. Ciampolini and N. Nardi, Inorg. Chem., 1966, 5, 41 CrossRef CAS; 1967, 6, 445.
  36. M. Ciampolini, Inorg. Chem., 1966, 5, 35 CrossRef CAS.
  37. R. W. Renfrew, R. S. Jamison and D. C. Weatherburn, Inorg. Chem., 1979, 18, 1584 CrossRef CAS.
  38. R. Smierciak, J. Passariello and E. L. Blinn, Inorg. Chem., 1977, 16, 2646 CrossRef CAS.
  39. L. Y. Martin, C. R. Sperati and D. H. Busch, J. Am. Chem. Soc., 1977, 99, 2968 CrossRef CAS.
  40. B. J. Hathaway, Coord. Chem. Rev., 1983, 52, 87 CrossRef CAS.
  41. M. C. Styka, R. C. Smierciak, E. L. Blinn, R. E. DeSimone and J. V. Passarielo, Inorg. Chem., 1978, 17, 82 CrossRef CAS.
  42. H. R. Gersmann and J. D. Swalen, J. Chem. Phys., 1962, 36, 3221 CrossRef CAS.
  43. H. Yokoi, M. Sai, T. Isobe and S. Ohsawa, Bull. Chem. Soc. Jpn., 1972, 45, 2189 CAS.
  44. P. W. Lau and W. C. Lin, J. Inorg. Nucl. Chem., 1975, 37, 2389 CrossRef CAS.
  45. A. W. Addison, M. Carpenter, L. K.-M. Lau and M. Wicholas, Inorg. Chem., 1978, 17, 1545 CrossRef CAS.
  46. M. J. Maroney and N. J. Rose, Inorg. Chem., 1984, 23, 2252 CrossRef CAS.
  47. V. J. Töm, C. C. Fox, J. C. A. Baeyens and R. D. Hancock, J. Am. Chem. Soc., 1984, 106, 5947 CrossRef CAS.
  48. C. Furlani, Coord. Chem. Rev., 1968, 3, 141 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.