Synthesis of acylphosphine complexes by controllable migration of acyl groups from molybdenum to phosphido ligands[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Harry Adams, Neil A. Bailey, Peter Blenkiron and Michael J. Morris


Abstract

The acyl complexes [Mo(COR1)(CO)2(PPh2H)(η-C5H5)] (R1 = Me or Et) have been prepared in high yield by the reaction of [MoR1(CO)3(η-C5H5)] with PPh2H. Deprotonation of the diphenylphosphine ligand with 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu) at –78 °C produced a phosphorus-centred anion which can be alkylated by treatment with R2I (R2 = Me or Et) to give the substituted phosphine acyl complexes [Mo(COR1)(CO)2(PPh2R2)(η-C5H5)], or acylated with R2COCl to produce acylphosphine acyl complexes [Mo(COR1)(CO)2(PPh2COR2)(η-C5H5)]. If the deprotonation is carried out at room temperature, however, migration of the metal acyl group to the phosphorus atom occurs to give the molybdenum-centred anion [Mo(CO)2(PPh2COR1)(η-C5H5)], which can in turn be alkylated with R2I to give the acylphosphine alkyl complexes [MoR2(CO)2(PPh2COR1)(η-C5H5)]. The metal-centred anion also undergoes typical reactions with H+ and chlorinated solvents to give [MoX(CO)2(PPh2COR1)(η-C5H5)] (X = H or Cl). Mechanistic studies showed that (i) on deprotonation of the related complex [MoMe(CO)2(PPh2H)(η-C5H5)] the methyl group does not undergo migration to phosphorus, and (ii) the reaction is largely intramolecular but with a measurable intermolecular component. A mechanism is therefore proposed involving nucleophilic attack on the acyl carbon atom by the anionic phosphido ligand. Full spectroscopic data for the new complexes are reported and interpreted, and the crystal structure of [Mo(COMe)(CO)2(PPh2COMe)(η-C5H5)] has been determined.


References

  1. J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, (Editors), Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1987 Search PubMed.
  2. P. Blenkiron, M. H. Lavender and M. J. Morris, J. Organomet. Chem., 1992, 426, C28 CrossRef CAS.
  3. R. A. Dubois, P. E. Garrou, K. Lavin and H. R. Allcock, Organometallics, 1984, 3, 649 CrossRef CAS; A. B. Abatjoglou and D. R. Bryant, Organometallics, 1984, 3, 932 CrossRef CAS; P. E. Garrou, Chem. Rev., 1985, 85, 171 CrossRef CAS.
  4. P. M. Treichel, W. M. Douglas and W. K. Dean, Inorg. Chem., 1972, 11, 1615 CrossRef CAS; P. M. Treichel, W. K. Dean and W. M. Douglas, J. Organomet. Chem., 1972, 42, 145 CrossRef CAS.
  5. H. Adams, N. A. Bailey, P. Blenkiron and M. J. Morris, J. Organomet. Chem., 1993, 460, 73 CrossRef CAS.
  6. K. W. Barnett and T. G. Pollmann, J. Organomet. Chem., 1974, 69, 413 CrossRef CAS; P. J. Craig and M. Green, J. Chem. Soc. A, 1968, 1978 RSC; P. J. Craig and J. Edwards, J. Less Common Met., 1974, 36, 193 Search PubMed.
  7. W. Beck, A. Melnikoff and R. Stahl, Chem. Ber., 1966, 99, 3721 CAS.
  8. S. Abbott, G. J. Baird, S. G. Davies, I. M. Dordor-Hedgecock, T. R. Maberly, J. C. Walker and P. Warner, J. Organomet. Chem., 1985, 289, C13 CrossRef CAS.
  9. W. Malisch, H. Blau and F. J. Haaf, Chem. Ber., 1981, 114, 2956 CAS.
  10. V. Ashima and G. M. Gray, Inorg. Chim. Acta, 1988, 148, 148; E. Lindner and A. Thasitis, Z. Anorg. Allg. Chem., 1974, 409, 35 CrossRef CAS.
  11. W. Malisch, R. Maisch, A. Meyer, D. Greissinger, E. Gross, I. J. Colquhoun and W. McFarlane, Phosphorus Sulphur, 1983, 18, 299 Search PubMed; R. Regragui and P. H. Dixneuf, New J. Chem., 1988, 12, 547 Search PubMed.
  12. E. Lindner and A. Thasitis, Chem. Ber., 1974, 107, 2418 CAS.
  13. W. Tikkanen, A. L. Kim, K. B. Lam and K. Ruekert, Organometallics, 1995, 14, 1525 CrossRef CAS; W. Tikkanen and J. W. Ziller, Organometallics, 1991, 10, 2266 CrossRef CAS.
  14. J. W. Faller and A. S. Anderson, J. Am. Chem. Soc., 1970, 92, 5852 CrossRef CAS.
  15. H. Schumann, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th edn., Mo: Organomolybdenum Compounds, Springer, Berlin, 1991, part 7 Search PubMed.
  16. M. R. Churchill and J. P. Fennessey, Inorg. Chem., 1968, 7, 953 CrossRef CAS.
  17. P. R. Drake and M. C. Baird, J. Organomet. Chem., 1989, 363, 131 CrossRef CAS; R. J. Haines, R. S. Nyholm and M. H. B. Stiddard, J. Chem. Soc. A, 1968, 43 RSC; K. W. Barnett and P. M. Treichel, Inorg. Chem., 1967, 6, 294 CrossRef CAS; R. J. Haines and C. R. Nolte, J. Organomet. Chem., 1970, 24, 725 CrossRef CAS; R. J. Klingler, W. Butler and M. D. Curtis, J. Am. Chem. Soc., 1975, 97, 3535 CrossRef CAS.
  18. Z. Mao, A. B. Todaro and A. R. Cutler, 4th Chemical Conference of North America, New York, 1991, abstract INOR 240.
  19. G. D. Vaughn, K. A. Krein and J. A. Gladysz, Organometallics, 1986, 5, 936 CrossRef CAS.
  20. H. Adams, M. T. Atkinson and M. J. Morris, unpublished work.
  21. E. Lindner, M. Stängle, W. Hiller and R. Fawzi, Chem. Ber., 1989, 122, 823 CAS; J. Powell, E. Fuchs and J. F. Sawyer, Organometallics, 1990, 9, 1722 CrossRef CAS; G. A. Carriedo, V. Riera, M. L. Rodriguez and J. C. Jeffery, J. Organomet. Chem., 1986, 314, 139 CrossRef CAS.
  22. P. C. Heah and J. A. Gladysz, J. Am. Chem. Soc., 1984, 106, 7636 CrossRef CAS.
  23. H. Adams, L. J. Gill and M. J. Morris, Organometallics, 1996, 15, 464 CrossRef CAS; H. Adams, N. A. Bailey, L. J. Gill, M. J. Morris and F. A. Wildgoose, J. Chem. Soc., Dalton Trans., 1996, 1437 RSC.
  24. R. B. King, Organometallic Syntheses, Academic Press, New York, 1965, vol. 1, p. 109 and 145 Search PubMed.
  25. K. Henrick, M. McPartlin, A. D. Horton and M. J. Mays, J. Chem. Soc., Dalton Trans., 1988, 1083 RSC.
  26. G. M. Sheldrick, SHELXTL, An integrated system for solving, refining and displaying crystal structures from diffraction data, Revision 5. 1, University of Göttingen, Germany 1985.
Click here to see how this site uses Cookies. View our privacy policy here.