The influence of the chelate effect on supramolecular structure formation: synthesis and crystal structures of zinc thiourea and thiosemicarbazide complexes with terephthalate

(Note: The full text of this document is currently only available in the PDF Version )

Andrew D. Burrows, Stephan Menzer, D. Michael P. Mingos, Andrew J. P. White and David J. Williams


Abstract

The lability of the ligand with a potential hydrogen bond donor–hydrogen bond donor arrangement was found to be the predominant factor in determining the structures of the adducts formed between zinc(II) complexes of thiourea [tu, NH2C(S)NH2] and thiosemicarbazide [tsc, NH2C(S)NHNH2] and the terephthalate anion [tere, C6H4(CO2)2-1,4]. Reaction of [Zn(tsc)2][NO3]2, containing the bidentate thiosemicarbazide ligand, with sodium terephthalate led to a hydrogen-bonded structure, [Zn(tsc)2(OH2)2][tere]·2H2O, 1, in which the cations and anions are linked into chains through charge-augmented double hydrogen bonds between two NH protons on the tsc ligands and two oxygen lone pairs on the carboxylate. This chain formation is similar to that previously observed for related nickel complexes, although there are major differences in the way in which these chains are linked together into sheets. In contrast to the thiosemicarbazide complex, the reaction of [Zn(tu)4][NO3]2, containing unidentate thiourea ligands, with sodium terephthalate led to the formation of a co-ordinatively-bonded polymer, [Zn2(µ-tu)(tu)2(µ-tere)2]·4H2O, 2, in which the terephthalate anions have displaced some of the thiourea ligands from each zinc co-ordination sphere. The zigzag tapes formed by the terephthalate ligands bridging zinc atoms are linked together into double strands via bridging thiourea ligands.


References

  1. S. Subramanian and M. J. Zaworotko, Coord. Chem. Rev., 1994, 137, 357 CrossRef CAS.
  2. D. S. Lawrence, T. Jiang and M. Levett, Chem. Rev., 1995, 95, 2229 CrossRef CAS.
  3. A. D. Burrows, C.-W. Chan, M. M. Chowdhry, J. E. McGrady and D. M. P. Mingos, Chem. Soc. Rev., 1995, 24, 329 RSC.
  4. A. D. Burrows, D. M. P. Mingos, A. J. P. White and D. J. Williams, Chem. Commun., 1996, 97 RSC.
  5. R. H. Prince, in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 5, p. 925 Search PubMed.
  6. M. C. Etter, Acc. Chem. Res., 1990, 23, 120 CrossRef CAS.
  7. M. C. Etter, J. Phys. Chem., 1991, 95, 4601 CrossRef CAS.
  8. J. Bernstein, R. E. Davis, L. Shimoni and N.-L. Chang, Angew. Chem., Int. Ed. Engl., 1995, 34, 1555 CrossRef CAS.
  9. C. B. Aakeröy and K. R. Seddon, Chem. Soc. Rev., 1993, 22, 397 RSC.
  10. L. Cavalca, G. F. Gasparri, G. D. Andreeti and P. Domiano, Acta Crystallogr., 1967, 22, 90 CrossRef CAS.
  11. K. Smolander, M. Ahlgrèn, M. Melník, J. Skorsepa and K. Györyovà, Acta Crystallogr., Sect. C, 1994, 50, 1900 CrossRef.
  12. J. Cernák, I. Adzimová, F. Gérard and A. M. Hardy, Acta Crystallogr., Sect. C, 1995, 51, 392 CrossRef.
  13. I. Potocnák, M. Dunaj-Jureo, V. Petrícek and J. Cernák, Acta Crystallogr., Sect. C, 1994, 50, 1902 CrossRef.
  14. E. Kimura, T. Ikeda, M. Shionoya and M. Shiro, Angew. Chem., Int. Ed. Engl., 1995, 34, 663 CrossRef CAS.
  15. C. Robl, Z. Anorg. Allg. Chem., 1988, 561, 57 CrossRef CAS.
  16. D. S. Mahadevappa and A. S. Ananda Murthy, Aust. J. Chem., 1972, 25, 1565 CAS.
  17. R. Vega, A. Lopez-Castro and R. Marguez, Acta Crystallogr., Sect. B, 1978, 34, 2297 CrossRef.
  18. SHELXTL PC, version 5.03, Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.