Platinum(II) complexes catalyze reactions between platinum(IV) complexes and 9-methylxanthine‡

(Note: The full text of this document is currently only available in the PDF Version )

Rosette M. Roat, Maria J. Jerardi, Catherine B. Kopay, Danica C. Heath, Jessica A. Clark, Jessa A. DeMars, John M. Weaver, Ernst Bezemer and Jan Reedijk


Abstract

Reactions between 9-methylxanthine (9-mxan) and platinum(IV) complexes having ammine, organic amine and chloro ligands are speeded up dramatically by additions of small amounts of the analogous platinum(II) complex. Complexes studied include cis-dichlorodiammineplatinum(II) {cis-[Pt(NH3)2Cl2] 1a}, cis-tetrachlorodiammineplatinum(IV) {cis-[Pt(NH3)2Cl4] 1b}, cis-dichloroammine(cyclohexylamine)platinum(II) {cis-[Pt(NH3)(cha)Cl2] 2a}, cis-tetrachloroammine(cyclohexylamine)platinum(IV) {cis-[Pt(NH3)(cha)Cl4] 2b}, chloro(diethylenetriamine)platinum(II) chloride {[Pt(dien)Cl]Cl 3a} and mer-trichloro(diethylenetriamine)platinum(IV) chloride {mer-[Pt(dien)Cl3]Cl 3b}. For a 10∶90 molar ratio of 1a1b, the half-life for platinum(IV)–9-mxan product formation is approximately 3 h whereas t½ for pure 1b–9-mxan product formation is greater than 90 h, indicating a 30 times rate enhancement upon addition of 10% of the platinum(II) complex. For the 2a2b pair, an eight-fold rate enhancement is observed over that for pure 2b–9-mxan. This behavior may be related to the chloride bridging mechanism first elucidated for platinum-(II) and -(IV) complexes. Since known platinum-(II) and -(IV) antitumor drugs target nucleobases of DNA to effect cell death in malignant cells, the reactions discussed may shed light on platinum antitumor compound reaction mechanisms.


References

  1. A. Werner, Z. Anorg. Allg. Chem., 1893, 3, 267 Search PubMed.
  2. (a) B. Rosenberg, L. Van Camp and T. Krigas, Nature (London), 1965, 205, 698 CAS; (b) B. Rosenberg, in Nucleic Acid-Metal Ion Interactions, ed. T. G. Spiro, Wiley, New York, 1980, pp. 1–29 Search PubMed.
  3. C. M. Giandomenica, Inorg. Chem., 1995, 34, 1015 CrossRef; L. R. Kelland, Cancer Res., 1992, 52, 822 CAS.
  4. N. Farrell and M. van Beusichem, Inorg. Chem., 1992, 31, 634 CrossRef CAS.
  5. N. Farrell, Biochemistry, 1995, 34, 15 480 CrossRef CAS.
  6. S. E. Miller and D. A. House, Inorg. Chim. Acta, 1991, 190, 135 CrossRef CAS; 1990, 173, 53; 1989, 166, 189.
  7. J. Reedijk, Chem. Commun., 1996, 801 RSC; M. J. Bloemink and J. Reedijk, in Metal Ions in Biological Systems, eds. H. Sigel and A. M. Sigel, Dekker, New York, 1996, vol. 32, pp. 641–685 Search PubMed.
  8. S. E. Sherman and S. J. Lippard, Chem. Rev., 1987, 87, 1153 CrossRef CAS; A. Laoui, J. Kozelka and J.-C. Chottard, Inorg. Chem., 1988, 27, 2751 CrossRef CAS; F. Herman, J. Kozelka, V. Stoven, E. Guittet, J.-P. Girault, T. Huynh-Dinh, J. Igolen, J.-Y. Lallemand and J.-C. Chottard, Eur. J. Biochem, 1990, 194, 119 CAS; J. H. J. den Hartog, C. Altona, J. H. van Boom, G. A. van der Marel, C. A. G. Haasnoot and J. Reedijk, Biomol. Struct. Dyn., 1985, 2, 1137 Search PubMed.
  9. U. Frey, J. D. Ranford and P. J. Sadler, Inorg. Chem., 1993, 32, 1333 CrossRef CAS.
  10. M. I. Djuran, E. L. M. Lempers and J. Reedijk, Inorg. Chem., 1991, 30, 2648 CrossRef CAS.
  11. R. M. Roat and J. Reedijk, J. Inorg. Biochem., 1993, 52, 263 CrossRef CAS.
  12. G. St. Nikolov, N. Trendafilova, H. Schönenberger, R. Gust, J. Kritzenberger and H. Yersin, Inorg. Chim. Acta, 1994, 217, 159 CrossRef CAS; R. Romeo, A. Grassi and L. M. Scolaro, Inorg. Chem., 1992, 31, 4383 CrossRef CAS; B. Brønnum, H. S. Johansen and L. H. Skibsted, Inorg. Chem., 1992, 31, 3023 CrossRef; M. Alink, H. Nakahara, T. Hirano, K. Inagaki, M. Nakanishi, Y. Kidani and J. Reedijk, Inorg. Chem., 1991, 30, 1236 CrossRef CAS; J. Arpalahti and M. Ritala, Inorg. Chem., 1991, 30, 2826 CrossRef; J. Arpalahti, Inorg. Chem., 1990, 29, 4598 CrossRef CAS; J. Arpalahti and B. Lippert, Inorg. Chem., 1991, 29, 104; P. J. Bednarski, E. Ehrensperger, H. Schönenberger and T. Burgemeister, Inorg. Chem., 1991, 30, 3015 CrossRef CAS.
  13. J. W. Moore and R. G. Pearson, Kinetics and Mechanism, Wiley, New York, 1981 Search PubMed; F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions, Wiley, New York, 2nd edn., 1968, pp. 493–497 Search PubMed.
  14. F. Basolo, P. H. Wilks, R. G. Pearson and R. G. Wilkins, J. Inorg. Nucl. Chem., 1958, 6, 161 CrossRef CAS.
  15. H. R. Ellison, F. Basolo and R. G. Pearson, J. Am. Chem. Soc., 1961, 83, 3943 CrossRef.
  16. A. J. Poë and D. H. Vaughan, J. Am. Chem. Soc., 1970, 92, 7537 CrossRef CAS.
  17. J. F. Hartwig and S. J. Lippard, Inorg. Chem., 1992, 114, 5646 CAS.
  18. F. I. Raynaud, F. E. Boxall, P. Goddard, C. F. Barnard, B. A. Murrer and L. R. Kelland, Anticancer Res., 1996, 16(4A), 1857 Search PubMed; K. J. Mellish, C. F. J. Barnard, B. A. Murrer and L. R. Kelland, Int. J. Cancer, 1995, 62(6), 717 CrossRef CAS.
  19. A. T. M. Marcelis, C. G. van Kralingen and J. Reedijk, J. Inorg. Biochem., 1980, 13, 213 CrossRef CAS; F. j. Dijt, G. W. Canters, J. H. J. den Hartog, A. T. M. Marcelis and J. Reedijk, J. Am. Chem. Soc., 1984, 106, 3644 CrossRef CAS.
  20. W. R. Mason and R. C. Johnson, Inorg. Chem., 1965, 4, 1258 CrossRef CAS; F. Basolo, J. Inorg. Nucl. Chem., 1961, 17, 383 CrossRef.
  21. J. Lallemand, J. Soulie and J.-C. Chottard, J. Chem. Soc., Chem. Commun., 1980, 436 RSC.
  22. R. C. Johnson, F. Basolo and R. G. Pearson, J. Inorg. Nucl. Chem., 1962, 24, 59 CrossRef CAS.
  23. C. M. Giandomenico, M. J. Abrams, B. A. Murrer, J. F. Vollano, M. I. Rheinheimer, S. B. Wyer, G. E. Bossard and J. D. Higgins, Inorg. Chem., 1995, 34, 1015 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.