Bonding in the trihalides (X3), mixed trihalides (X2Y) and hydrogen bihalides (X2H). The connection between hypervalent, electron-rich three-center, donor–acceptor and strong hydrogen bonding[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Gregory A. Landrum, Norman Goldberg and Roald Hoffmann


Abstract

The nature of the bonding in the trihalides (X3), mixed trihalides (X2Y), and hydrogen bihalides (X2H) has been analysed by applying ideas from qualitative molecular orbital theory to computational results from density-functional calculations. A systematic, unified investigation showed that the bonding in all of these diverse anions can be understood in terms of the Rundle–Pimentel scheme for electron-rich three-center bonding. It also showed the equivalence of the donor–acceptor and hypervalent bonding views of these molecules. Less symmetrical trihalide ions were studied as well, e.g. the reasons why IICl is favored over IClI were explored. This site preference is considerably less pronounced in the I–IBr system. The donor–acceptor perspective (X attack at the two possible sites of X–Y) was found to be useful. Similarly, formation of XHX from X and HX is strongly favored over formation of XXH, and the energy difference between these two geometries increases with increasing electronegativity of X.


References

  1. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1st edn., 1940 Search PubMed.
  2. G. E. Kimball, J. Chem. Phys., 1940, 8, 188 CrossRef CAS.
  3. G. C. Pimentel, J. Chem. Phys., 1951, 19, 446 CrossRef CAS.
  4. R. J. Hach and R. E. Rundle, J. Am. Chem. Soc., 1951, 73, 4321 CrossRef CAS.
  5. R. Gleiter and R. Hoffmann, Tetrahedron, 1968, 24, 5899 CrossRef CAS.
  6. E. F. Riedel and R. D. Willett, Theor. Chim. Acta, 1976, 42, 237 CrossRef CAS.
  7. P. W. Tasker, Mol. Phys., 1977, 33, 511 CAS.
  8. M. Kertész and F. Vonderviszt, J. Am. Chem. Soc., 1982, 104, 5889 CrossRef.
  9. W. Kutzelnigg, Angew. Chem., Int. Ed. Engl., 1984, 23, 272 CrossRef.
  10. J. J. Novoa, F. Mota and S. Alvarez, J. Phys. Chem., 1988, 92, 6561 CrossRef CAS.
  11. G. L. Gutsev, J. Struct. Chem., 1990, 30, 733 CrossRef.
  12. L. H. Sæthre, O. Gropen and J. Slettern, Acta Chem. Scand., 1988, 42, 16 Search PubMed.
  13. G. L. Gutsev, Russ. J. Phys. Chem., 1992, 66, 1596 Search PubMed.
  14. T. G. Wright and E. P. F. Lee, Mol. Phys., 1993, 79, 995 CAS.
  15. K. Yamashita, K. Morokuma and C. Leforestier, J. Chem. Phys., 1993, 99, 8848 CrossRef CAS.
  16. R. J. Gillespie and E. A. Robinson, Angew. Chem., Int. Ed. Engl., 1996, 35, 495 CrossRef CAS.
  17. D. Danovich, J. Hrušák and S. Shaik, Chem. Phys. Lett., 1995, 233, 249 CrossRef CAS.
  18. K. N. Robertson, P. K. Bakshi, T. S. Cameron and O. Knop, Z. Anorg. Allg. Chem., 1997, 623, 104 CrossRef CAS.
  19. C. A. Coulson, in Hydrogen Bonding, eds. D. Hadzi and H. W. Thompson, Pergamon, Oxford, 1959, p. 339 Search PubMed.
  20. K. Morokuma, J. Chem. Phys., 1971, 55, 1236 CrossRef CAS.
  21. K. Kitaura and K. Morokuma, Int. J. Quantum Chem., 1976, 10, 325 CrossRef CAS.
  22. K. Morokuma, Acc. Chem. Res., 1977, 10, 294 CrossRef CAS.
  23. H. Umeyama, K. Kitaura and K. Morokuma, Chem. Phys. Lett., 1975, 36, 11 CrossRef CAS.
  24. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211 CrossRef CAS.
  25. A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735 CrossRef CAS.
  26. S. Shaik, H. B. Schlegel and S. Wolfe, Theoretical Aspects of Physical Organic Chemistry: the SN2 Mechanism, Wiley, New York, 1992 Search PubMed.
  27. J. D. McCullough, Inorg. Chem., 1964, 3, 1425 CrossRef CAS.
  28. C. Knobler and J. D. McCullough, Inorg. Chem., 1968, 7, 365 CrossRef CAS.
  29. S. Akabari, Y. Takanohashi, S. Aoki and S. Sato, J. Chem. Soc., Perkin Trans. 1, 1991, 3121 RSC.
  30. S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard and S. Sarwar, J. Chem. Soc., Dalton Trans., 1997, 1031 RSC.
  31. N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and P. J. Kobryn, J. Chem. Soc., Dalton Trans., 1993, 101 RSC.
  32. N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1993, 2261 RSC.
  33. N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 2421 RSC.
  34. N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1992, 355 RSC.
  35. S. M. Godfrey, D. G. Kelly, C. A. McAuliffe, A. G. Mackie, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 1163 RSC.
  36. N. Goldberg, G. A. Landrum and R. Hoffmann, unpublished work.
  37. E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 41 CrossRef CAS.
  38. E. J. Baerends and P. Ros, Chem. Phys., 1975, 8, 412 CrossRef CAS.
  39. E. J. Baerends and P. Ros, Int. J. Quantum Chem., 1978, S12, 169.
  40. A. D. Becke, J. Chem. Phys., 1986, 84, 4524 CrossRef CAS.
  41. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  42. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  43. J. P. Perdew, Phys. Rev. B, 1986, 34, 7406 CrossRef.
  44. J. G. Snijders, E. J. Baerends and P. Vernoojis, At. Data Nucl. Data Tables, 1982, 26, 483 CrossRef.
  45. A. Rosa, A. W. Ehlers, E. J. Baerends, J. G. Snijders and G. te Velde, J. Phys. Chem., 1996, 100, 5690 CrossRef CAS.
  46. F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129 CrossRef CAS.
  47. G. A. Landrum, YAEHMOP, yet another extended Hückel Molecular Orbital Package (freely available on the World Wide Web at: http://overlap.chem.cornell.edu:8080/yaehmop.html), 1995.
  48. T. Ziegler, in Metal–ligand interactions: from atoms, to clusters, to surfaces, eds. D. R. Salahub and N. Russo, Kluwer, Dordrecht, 1992, p. 367 Search PubMed.
  49. T. A. Albright, J. K. Burdett and M.-H. Whangbo, Orbital Interactions in Chemistry, Wiley, New York, 1985 Search PubMed.
  50. A. J. Downs and C. J. Adams, Comprehensive Inorganic Chemistry, Pergamon, Oxford, 1976 Search PubMed.
  51. R. S. Drago, Physical Methods in Chemistry, Saunders College Publishing, Philadelphia, 1st edn., 1977 Search PubMed.
  52. P. W. Atkins, Physical Chemistry,, W. H. Freeman, New York, 3rd edn., 1986 Search PubMed.
  53. L. E. Topol, Inorg. Chem., 1971, 10, 736 CrossRef CAS.
  54. A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, New York, 5th edn., 1984 Search PubMed.
  55. P. K. Bakshi, M. A. James, T. S. Cameron and O. Knop, Can. J. Chem., 1996, 74, 559 CAS.
  56. R. N. Robertson, T. S. Cameron and O. Knop, Can. J. Chem., 1996, 74, 1572 CAS.
  57. T. Naito, A. Tateno, T. Udagawa, A. Kobayashi and T. Nogami, J. Chem. Soc., Faraday Trans., 1994, 763 RSC.
  58. J. Emsley, Chem. Soc. Rev., 1980, 9, 91 RSC.
  59. N. E. Klepeis, A. L. East, A. G. Császár, W. A. Allen, T. J. Lee and D. W. Schwenke, J. Chem. Phys., 1993, 99, 3865 CrossRef CAS.
  60. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, New York, 1984 Search PubMed.
  61. N. W. Alcock, Adv. Inorg. Radiochem., 1972, 15, 1 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.