Electrochemical behaviour of (protoporphyrinato IX)iron(III) encapsulated in aqueous surfactant micelles

(Note: The full text of this document is currently only available in the PDF Version )

Diganta K. Das, Churamani Bhattaray and Okhil K. Medhi


Abstract

The electrochemical behaviour of iron protoporphyrinate IX (hemin) [(3,7,12,17-tetramethyl-8,13-divinylporphyrin-2,18-dipropanoato)iron(III)] in aqueous sodium dodecyl sulfate (sds), hexadecyltrimethylammonium bromide or Triton X-100 surfactant micellar solution was investigated by cyclic voltammetry (CV) and Osteryoung square-wave voltammetry (OSWV) techniques. The dependence of the midpoint potential on the concentration and on the nature of the surfactant shows that the potentials shift anodically with respect to water or aqueous ethanol. The midpoint potentials of hemin at pH 7.0 vs. normal hydrogen electrode are –52 mV in NMe3(C16H33)Br, –112 mV in Triton X-100, –152 mV in sds and –190 mV in ethanol–water (1∶1, v/v) solutions. Thus the hydrophobic effect of the micelle gives a positive shift of the midpoint potential. The maximum positive shift in surfactants (with respect to water) of ca. +120 mV was found in the micelles. The trend in the anodic shift is EtOH–water < sds < Triton X-100 < NMe3(C16H33)Br. The diffusion coefficients of the hemin complex in the micelles are an order of magnitude smaller than that of monomeric hemin in aqueous ethanolic media. The rates of heterogeneous electron transfer at the glassy carbon electrode were found to be smaller in the micelles as compared to those in aqueous ethanolic media. The midpoint potential of hemin monomers encapsulated in aqueous surfactant micelles shows a pH dependence with ΔE/ΔpH ca. –59 mV indicating that electron transfer at the iron site is influenced by the uptake of protons at the axial ligand.


References

  1. D. Dolphin(Editor), The Porphyrins, Academic Press, New York, 1979, vols. 4 and 7 Search PubMed.
  2. C. A. Reed, in Metal Ions in Biological System, ed. H. Siegel, Marcel Dekker, New York, 1978, vol. 7 Search PubMed.
  3. A. B. P. Lever and H. B. Gray(Editors), Iron Porphyrins, Addision-Wesley, Reading, MA, 1983, parts 1–3 Search PubMed.
  4. G. R. Moore and G. W. Pettigrew, in Cytochrome c. Evolutionary, Structural and Physiochemical Aspects, Springer, Berlin, Heidelberg, 1990, ch. 7, pp. 309–362 Search PubMed.
  5. R. J. Kassner, J. Am. Chem. Soc., 1973, 95, 2674 CrossRef CAS.
  6. W. I. White, in The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1979, vol. 5, p. 303 Search PubMed.
  7. J. Simplicio, Biochemistry, 1972, 11, 2525 CrossRef CAS; J. Simplicio and K. Schewenzer, Biochemistry, 1973, 12, 1923 CrossRef CAS.
  8. J. Simplicio, K. Schewenzer and F. Maenpa, J. Am. Chem. Soc, 1975, 97, 7319 CrossRef CAS.
  9. W. L. Hinze and J. H. Fendler, J. Chem. Soc., Dalton Trans., 1976, 1469 RSC.
  10. J. H. Fendler and E. J. Fendler, in Catalysis in Micelles and Macromolecular Systems, Academic Press, New York, 1975, pp. 249 and 250 Search PubMed.
  11. O. K. Medhi and J. Silver, Inorg. Chim. Acta, 1988, 153, 133 CrossRef CAS.
  12. S. Mazumdar, O. K. Medhi and S. Mitra, Inorg. Chem., 1988, 27, 2541 CrossRef CAS.
  13. D. G. Davis, in The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1978, vol. 5c, p. 127 Search PubMed.
  14. T. M. Bednarski and J. Jordan, J. Am. Chem. Soc., 1967, 89, 1552 CrossRef CAS; 1964, 86, 5690.
  15. J. F. Rusling and M. Y. Brooks, J. Electroanal. Chem. Interfacial Electrochem., 1984, 163, 277 CrossRef CAS.
  16. K. M. Kadish and J. Jordan, J. Electrochem. Soc., 1978, 125, 1250 CAS; J. Electroanal. Chem. Interfacial Electrochem., 1970, 92, 2982 Search PubMed.
  17. J. F. Rusling, N. Hu, H. Zhang, D. Howe, C.-L. Miaw and E. Couture, Electrochemistry in Colloidal Dispersions, eds. R. A. Mackay and J. Texter, VCH, New York, 1992, pp. 303–318 Search PubMed.
  18. J. F. Rusling, Acc. Chem. Res., 1991, 24, 75 CrossRef CAS.
  19. J. F. Rusling, J. Am. Chem. Soc., 1993, 115, 11 891 CrossRef CAS; G. N. Kamen, T. Leipert, S. S. Shukla and J. F. Rusling, J. Electroanal. Chem. Interfacial Electrochem., 1987, 233, 173 CrossRef; J. F. Rusling, C.-L. Miaw and E. C. Couture, Inorg. Chem., 1990, 29, 2025 CrossRef CAS.
  20. J. R. Kirchoff, W. R. Heineman and E. Deutsch, Inorg. Chem., 1988, 27, 3608 CrossRef.
  21. P. T. Kissinger and W. R. Heineman, Laboratory Technique in Electroanalytical Chemistry, Marcel Dekker, New York, 1985, p. 59 Search PubMed.
  22. R. S. Nicholson, Anal. Chem., 1965, 37, 1351 CrossRef.
  23. M. J. Rossen, Surfactant and Interfacial Phenomena, Wiley, New York, 1978 Search PubMed.
  24. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980, ch. 12, pp. 535 and 536 Search PubMed.
  25. M. S. Farnandez and P. Fromherz, J. Phys. Chem., 1977, 81, 1755 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.