Synthesis of oxomolybdenum bis(dithiolene) complexes related to the cofactor of the oxomolybdoenzymes[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

E. Stephen Davies, Roy L. Beddoes, David Collison, Andrew Dinsmore, Arefa Docrat, John A. Joule, Clare R. Wilson and C. David Garner


Abstract

A synthetic strategy is reported for a general route to asymmetric dithiolenes. This has been used for the generation of [MoO(dithiolene)2]2– complexes [dithiolene = SC(H)CS, R = phenyl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, quinoxalin-2-yl or 2-(dimethylaminomethyleneamino)-3-methyl-4-oxopteridin-6-yl], which have been characterised by analysis, spectroscopy and electrochemistry. The prototypical compound [PPh4]2[MoO(sdt)2]·EtOH, where sdt = α,β-styrenedithiolate (R = phenyl), crystallises in the space group P21/c with a = 13.217(4), b = 31.820(8), c = 14.534(7) Å, β = 113.8(2)° and Z = 4. The MoOS4 moiety is square-based pyramidal with the O atom at the apex [Mo[double bond, length half m-dash]O, 1.700(5) Å] and contains a cis geometry of the phenyl groups. The physical properties of all the compounds are consistent with a retention of the MoOS4 centre and the variation in the dithiolene 1H NMR resonances, infrared ν(Mo[double bond, length half m-dash]O) and ν(C[double bond, length half m-dash]C) stretching frequencies and the E½ values for the MoV–MoIV couple are rationalised by a consideration of the nature of the R substituent. The complexes with the pterin [2-amino-4(1H)-pteridinone] substituent have a particular relevance to the Mo centre in oxomolybdoenzymes, and are the closest structural models to date for these enzymes containing two molybdopterin ligands per metal.


References

  1. J. A. Pateman, D. J. Cove, B. M. Rever and D. B. Roberts, Nature (London), 1964, 201, 58 CAS.
  2. P. A. Ketchum, H. Y. Cambrier, W. A. Frazier, C. H. Madansky and A. Nason, Proc. Natl. Acad. Sci. USA, 1970, 66, 1016 CAS; A. Nason, K. Y. Lee, S. S. Pan, P. A. Ketchum, A. Lamberti and J. Devries, ibid., 1971, 68, 3242 Search PubMed.
  3. V. K. Shah and W. J. Brill, Proc. Natl. Acad. Sci. USA, 1977, 74, 3249; P. T. Pienkos, V. K. Shah and W. Brill, ibid.5468 Search PubMed.
  4. In the light of several previous reviews on Moco and related topics [refs. 5, 6(a) and S. Goswami, Heterocycles, 1993, 35, 1551] we reference here only key original papers concerned with the development of the subject Search PubMed.
  5. J. L. Johnson, in Molybdenum and Molybdenum Containing Enzymes, ed. M. P. Coughlan, Pergamon Press, Oxford, 1980, pp. 345–383 Search PubMed; J. C. Wootton, R. E. Nicolson, J. M. Cock, D. E. Walters, J. F. Burke, W. A. Doyle and R. C. Bray, Biochim. Biophys. Acta, 1991, 1057, 157 Search PubMed.
  6. (a) J. L. Johnson, in The Metabolic Basis of Inherited Disease, eds. C. R. Scriver, A. L. Beaudet, W. S. Sly and D. Valle, McGraw Hill, New York, 1989, p. 1463 Search PubMed; (b) G. K. Brown, R. D. Scholeum, H. B. Croll, J. E. Wraith and J. J. McGill, Neurology, 1989, 39, 252 Search PubMed.
  7. Molybdenum Enzymes, ed. T. G. Spiro, John Wiley and Sons, New York, 1985 Search PubMed; Molybdenum Enzymes, Cofactors and Model Systems, eds. E. I. Stiefel, D. Coucouvanis and W. E. Newton, ACS Symposium Series 535, 1993 Search PubMed; J. H. Enemark and C. S. Young, Adv. Inorg. Chem., 1994, 40, 1 Search PubMed; D. Collison, C. D. Garner and J. A. Joule, Chem. Soc. Rev., 1996, 25, 25 Search PubMed; R. Hille, Chem. Rev., 1996, 96, 2757 CAS.
  8. J. L. Johnson, B. E. Hainline and K. V. Rajagopalan, J. Biol. Chem., 1980, 255, 1783 CAS; J. L. Johnson, B. E. Hainline, K. V. Rajagopalan and B. H. Arison, J. Biol. Chem., 1984, 259, 5414 CAS.
  9. E. C. Taylor, P. S. Ray, I. S. Darwish, J. L. Johnson and K. V. Rajagopalan, J. Am. Chem. Soc., 1989, 111, 7664 CrossRef CAS.
  10. M. J. Romão, M. Archer, I. Moura, J. J. G. Moura, J. LeGall, R. Engh, M. Schneider, P. Hof and R. Huber, Science, 1995, 270, 1170 CAS.
  11. H. Schindelin, C. Kisker, J. Hilton, K. V. Rajagopalan and D. C. Rees, Science, 1996, 272, 1615 CrossRef CAS.
  12. F. Schneider, J. Löwe, R. Huber, H. Schindelin, C. Kisker and J. Knäblein, J. Mol. Biol., 1996, 263, 53 CrossRef CAS.
  13. S. Bailey, A. S. McAlpine, E. M. H. Duke, N. Benson and A. G. McEwan, Acta Crystallogr., Sect. D, 1996, 52, 194 CrossRef; S. Bailey, A. S. McAlpine, A. G. McEwan and A. L. Shaw, unpublished work.
  14. J. C. Boyington, V. N. Gladyshev, S. V. Khangulov, T. C. Stadtman and P. D. Sun, Science, 1997, 275, 1305 CrossRef CAS.
  15. M. K. Chan, S. Mukund, A. Kletzin, M. W. W. Adams and D. C. Rees, Science, 1995, 267, 1463 CAS.
  16. J. Van de Poel and H. M. Neumann, Inorg. Chem., 1968, 7, 2086 CrossRef CAS.
  17. S. J. Lippard and B. J. Russ, Inorg. Chem., 1967, 6, 1943 CrossRef CAS.
  18. D. J. Rowe, C. D. Garner and J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 1985, 1907 RSC.
  19. A. Dinsmore, J. H. Birks, C. D. Garner and J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 1997, 801 RSC.
  20. A. K. Bhattacharya and A. G. Hortmann, J. Org. Chem., 1974, 39, 95 CrossRef CAS.
  21. C. J. Pickett, J. Chem. Soc., Chem. Commun., 1985, 323 RSC.
  22. R. R. Gagné, C. A. Koval and G. C. Lisensky, Inorg. Chem., 1980, 19, 2854 CrossRef CAS.
  23. R. M. Murray, W. R. Heineman and G. W. O'Dom, Anal. Chem., 1967, 39, 1666 CrossRef CAS.
  24. N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 CrossRef.
  25. G. M. Sheldrick, C. Krueger and R. Goddard, Crystallographic Computing 3, Oxford University Press, 1985, p. 175 Search PubMed.
  26. D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.2A Search PubMed.
  27. D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.3.1 Search PubMed.
  28. TEXSAN-TEXRAY Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985.
  29. A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C34.
  30. J. A. McCleverty, Prog. Inorg. Chem., 1969, 10, 49.
  31. S. Boyde, C. D. Garner, J. A. Joule and D. J. Rowe, J. Chem. Soc., Chem. Commun., 1987, 800 RSC.
  32. S. Motherwell and W. Clegg, PLUTO Program for Plotting Molecular and Crystal Structures, University of Cambridge, 1978.
  33. S. Boyde, S. R. Ellis, C. D. Garner and W. Clegg, J. Chem. Soc., Chem. Commun., 1986, 1541 RSC.
  34. B. Götz, F. Knoch and H. Kisch, Chem. Ber., 1996, 129, 33.
  35. J. K. Hsu, C. J. Bonangelino, S. P. Kaiwar, C. M. Boggs, J. C. Fettinger and R. S. Pilato, Inorg. Chem., 1996, 35, 4743 CrossRef CAS.
  36. S. K. Das, P. K. Chaudhury, D. Biswas and S. Sarker, J. Am. Chem. Soc., 1994, 116, 9061 CrossRef CAS.
  37. S. R. Ellis, D. Collison, C. D. Garner and W. Clegg, J. Chem. Soc., Chem. Commun., 1986, 1483 RSC.
  38. S. Gruber, L. Kilpatrick, N. R. Bastian, K. V. Rajagopalan and T. G. Spiro, J. Am. Chem. Soc., 1990, 112, 8179 CrossRef CAS.
  39. H. Oku, N. Ueyama, M. Kondo and A. Nakamura, Inorg. Chem., 1994, 33, 209 CrossRef CAS.
  40. N. Ueyama, H. Oku, M. Kondo, T. Okamura, N. Yoshinaga and A. Nakamura, Inorg. Chem., 1996, 35, 643 CrossRef CAS.
  41. E. A. Allen, B. J. Brisdon, D. A. Edwards, G. W. A. Fowles and R. G. Williams, J. Chem. Soc., 1963, 4649 RSC.
  42. F. E. Mabbs, I. H. Hillier, J. Kendrick and C. D. Garner, Nature (London), 1975, 258, 138.
  43. C. D. Garner, L. Hill, N. C. Howlander, M. R. Hyde, F. E. Mabbs and V. I. Routledge, J. Less Common Met., 1977, 54, 27 Search PubMed.
  44. M. G. Finnegan, J. Hilton, K. V. Rajagopalan and M. K. Johnson, Inorg. Chem., 1993, 32, 2616 CrossRef CAS.
  45. N. Benson, J. A. Farrar, A. G. McEwan and A. J. Thomson, FEBS Lett., 1992, 307, 169 CrossRef CAS.
  46. B. Bennett, N. Benson, A. G. McEwan and R. C. Bray, Eur. J. Biochem., 1994, 225, 321 CAS.
  47. G. N. George, J. Hilton and K. V. Rajagopalan, J. Am. Chem. Soc., 1996, 118, 1113 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.