Synthesis and characterisation of transition-metal complexes involving cyclic diselenoether ligands

(Note: The full text of this document is currently only available in the PDF Version )

Douglas G. Booth, William Levason, Jeffrey J. Quirk, Gillian Reid and Stephen M. Smith


Abstract

Treatment of NCSe(CH2)3SeCN with o-C6H4(CH2Br)2 in Na–NH3–tetrahydrofuran yielded L2 (3H-1,4,5,7-tetrahydro-2,6-benzodiselenonine) in greater than 80% yield. This cyclic diselenoether has been fully characterised spectroscopically and structurally. Reaction of [Cu(MeCN)4]Y (Y = BF4 or PF6) or AgBF4 with 2 molar equivalents of L1 (1,5-diselenacyclooctane) or L2 afforded the mononuclear species [M(L)2]Y (M = Cu, Y = BF4 or PF6; M = Ag, Y = BF4). These compounds have been characterised by IR and 1H NMR spectroscopy, mass spectrometry and microanalysis. Crystal structure determinations on [Cu(L2)2]BF4, [Ag(L1)2]BF4 and [Ag(L2)2]BF4 confirmed the discrete molecular nature of these products, giving distorted tetrahedral cations in each case. These structures are compared to the structures of related species involving acyclic bidentate thio-, seleno- and telluro-ethers. The preparation of the tetraselenoether macrocyclic complex [Ag([16]aneSe4)]BF4 ([16]aneSe4 = 1,5,9,13-tetraselenacyclohexadecane) has also been determined. Compounds L1 and L2 reacted with 2 molar equivalents of [AuCl(tht)] (tht = tetrahydrothiophene) to yield [(AuCl)2L1] or [(AuCl)2L2] respectively as white solids. These neutral compounds are thought to involve linear Se–Au–Cl fragments. Compound L2 reacted with 1 molar equivalent of MCl2 (M = Pd or Pt) in refluxing MeCN to give cis-[MCl2(L2)]. Unusual low-frequency co-ordination shifts [δ(free ligand) – δ(complex)] were revealed by 77Se-{1H} NMR spectroscopy in each case. This is in contrast to cis-[MCl2(L1)] which display high-frequency co-ordination shifts. The 195Pt NMR spectroscopic data on cis-[PtCl2(L2)] are consistent with an Se2Cl2 donor set at PtII. The crystal structure of cis-[PdCl2(L2)] shows a distorted square-planar arrangement, with d(Pd–Se) slightly longer than in cis-[PdCl2(L1)].


References

  1. J. R. Black, N. R. Champness, W. Levason and G. Reid, J. Chem. Soc., Chem. Commun., 1995, 1277 RSC.
  2. J. R. Black, N. R. Champness, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 1995, 3439 RSC.
  3. J. R. Black, N. R. Champness, W. Levason and G. Reid, Inorg. Chem., 1996, 35, 1820 CrossRef CAS.
  4. J. R. Black, N. R. Champness, W. Levason and G. Reid, Inorg. Chem., 1996, 35, 4432 CrossRef CAS.
  5. P. F. Kelly, W. Levason, G. Reid and D. J. Williams, J. Chem. Soc., Chem. Commun., 1993, 1716 RSC.
  6. N. R. Champness, P. F. Kelly, W. Levason, G. Reid, A. M. Z. Slawin and D. J. Williams, Inorg. Chem., 1995, 34, 651 CrossRef CAS.
  7. C. S. Frampton, W. Levason, J. J. Quirk and G. Reid, Inorg. Chem., 1994, 33, 3120.
  8. W. Levason, J. J. Quirk and G. Reid, J. Chem. Soc., Dalton Trans., 1996, 3713 RSC.
  9. N. R. Champness, J. J. Quirk, W. Levason, G. Reid and C. S. Frampton, Polyhedron, 1995, 14, 2753 CrossRef CAS.
  10. W. Levason, J. J. Quirk, G. Reid and S. M. Smith, J. Chem. Soc., Dalton Trans., 1997, in the press Search PubMed.
  11. W. Levason, G. Reid and S. M. Smith, Polyhedron, 1997, in the press Search PubMed.
  12. R. J. Batchelor, F. W. B. Einstein, I. D. Gay, J.-H. Gu and B. M. Pinto, J. Organomet. Chem., 1991, 411, 147 CrossRef CAS.
  13. R. J. Batchelor, F. W. B. Einstein, I. D. Gay, J.-H. Gu, B. M. Pinto and X.-M. Zhou, J. Am. Chem. Soc., 1990, 112, 3706 CrossRef CAS.
  14. G. Hunter and R. C. Massey, J. Chem. Soc., Dalton Trans., 1974, 1873 Search PubMed.
  15. L. R. Hanton and T. Kemmitt, Inorg. Chem., 1993, 32, 363 CrossRef.
  16. T. Kumagai and S. Akabori, Chem. Lett., 1989, 1667 CAS.
  17. H. Hofmann, P. G. Jones, M. Noltemeyer, E. Peymann, W. Pinkert, H. W. Roesky and G. M. Sheldrick, J. Organomet. Chem., 1983, 241, 97 CrossRef CAS.
  18. A. J. Blake, R. O. Gould, J. A. Greig, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1989, 876 RSC; A. J. Blake, J. A. Greig, A. J. Holder, T. I. Hyde, A. Taylor and M. Schröder, Angew. Chem., Int. Ed. Engl., 1990, 29, 197 CrossRef; A. J. Blake, R. O. Gould, C. Radek, G. Reid, A. Taylor and M. Schröder, The Chemistry of the Copper and Zinc Triads, eds. A. J. Welch and S. K. Chapman, The Royal Society of Chemistry, London, 1993, p. 95 Search PubMed.
  19. D. Parker, P. S. Roy, G. Ferguson and M. E. Hunt, Inorg. Chim. Acta, 1989, 155, 227 CrossRef CAS.
  20. A. J. Blake, A. Taylor and M. Schröder, J. Chem. Soc., Chem. Commun., 1993, 1097 RSC.
  21. R. Uson, A. Laguna and M. Laguna, Inorg. Synth., 1989, 26, 85 CAS.
  22. K. C. Dash and H. Schmidbaur, Z. Naturforsch., Teil B, 1992, 47, 1261; M. G. B. Drew and M. J. Riedl, J. Chem. Soc., Dalton Trans., 1973, 52 RSC.
  23. P. G. Jones and C. Thoene, Z. Naturforsch., Teil B, 1991, 46, 50 CAS.
  24. E. G. Hope and W. Levason, Coord. Chem. Rev., 1993, 122, 109 CrossRef CAS.
  25. G. Kubas, Inorg. Synth., 1979, 19, 90 CAS.
  26. R. J. Batchelor, F. W. B. Einstein, I. D. Gay, J.-H. Gu, B. D. Johnston and B. M. Pinto, J. Am. Chem. Soc., 1989, 111, 6582 CrossRef CAS.
  27. SHELXS 86, program for crystal structure solution, G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 Search PubMed.
  28. TEXSAN Crystal Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1995.
  29. PATTY, The DIRDIF Program System, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.
  30. H. D. Flack, Acta Crystallogr., Sect. A, 1983, 39, 876 CrossRef.
  31. N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.