Synthesis and structural characterization of tris[3-trifluoromethyl-5-(2-thienyl)pyrazolyl]hydroborato thallium, Tl[TpCF3,Tn]: a monovalent thallium complex with a highly solvent dependent JTl–F coupling constant, ranging from 0 to 850 Hz

(Note: The full text of this document is currently only available in the PDF Version )

Runyu Han, Prasenjit Ghosh, Peter J. Desrosiers, Swiatoslaw Trofimenko and Gerard Parkin


Abstract

The tris[3-trifluoromethyl-5-(2-thienyl)pyrazolyl]hydroborato thallium complex, Tl[TpCF3,Tn], has been prepared via the reaction of 3-trifluoromethyl-5-(2-thienyl)pyrazole with KBH4 followed by metathesis with TlNO3. Both 19F and 203Tl NMR spectroscopies reveal the presence of an exceptionally large 850 Hz four-bond 4JTl–F coupling constant for Tl[TpCF3,Tn] in chloroform at room temperature; however, the observed coupling constant is highly solvent dependent and is reduced to 0 Hz in methanol, acetonitrile and dimethyl sulfoxide. The molecular structure of Tl[TpCF3,Tn] has been determined by X-ray diffraction: Tl[TpCF3,Tn] is triclinic, P[1 with combining macron] (no. 2), a = 8.328(1), b = 11.432(2), c = 16.088(3) Å, α = 70.58(2), β = 82.90(2), γ = 77.54(2)°, U = 1408(1) Å3, Z = 2.


References

  1. For recent reviews see; (a) S. Trofimenko, Chem. Rev., 1993, 93, 943 CrossRef CAS; (b) G. Parkin, Adv. Inorg. Chem., 1995, 42, 291 CrossRef CAS; (c) N. Kitajima and W. B. Tolman, Prog. Inorg. Chem., 1995, 43, 419 CAS; (d) I. Santos and N. Marques, New. J. Chem., 1995, 19, 551 Search PubMed; (e) D. L. Reger, Coord. Chem. Rev., 1996, 147, 571 CrossRef CAS.
  2. The abbreviations adopted here for tris(pyrazolyl)hydroborato ligands are based on those described by Trofimenko [ref. 1(a)]. Thus, tris(pyrazolyl)hydroborato ligands are represented by the abbreviation [TpRR′] with the 3- and 5-alkyl substituents listed respectively as superscripts.
  3. For a review of monomeric alkyl, hydride and hydroxide complexes of the s- and p-block metals, see ref. 1(b).
  4. M. C. Kuchta, J. B. Bonanno and G. Parkin, J. Am. Chem. Soc., 1996, 118, 10 914 CrossRef CAS.
  5. H. V. R. Dias, W. Jin, H.-J. Kim and H.-L. Lu, Inorg. Chem., 1996, 35, 2317 CrossRef.
  6. (a) O. Renn, L. M. Venanzi, A. Marteletti and V. Gramlich, Helv. Chim. Acta, 1995, 78, 993 CrossRef CAS; (b) H. V. R. Dias, H.-L. Lu, R. E. Ratcliff and S. G. Bott, Inorg. Chem., 1995, 34, 1975 CrossRef CAS.
  7. C. K. Ghosh, J. K. Hoyano, R. Krentz and W. A. G. Graham, J. Am. Chem. Soc., 1989, 111, 5480 CrossRef CAS; U. E. Bucher, A. Currao, R. Nesper, H. Rüegger, L. M. Venanzi and E. Younger, Inorg. Chem., 1995, 34, 66 CrossRef CAS.
  8. H. V. R. Dias and H.-J. Kim, Organometallics, 1996, 15, 5374 CrossRef CAS.
  9. As an illustration of the ability of Rf substituents to have a pronounced effect on the stability and reactivity of {[TpRf,R]M} complexes, as compared with their alkylated counterparts, Dias has successfully used the [Tp(CF3)2] ligand to isolate a series of carbonyl derivatives of Cu, Ag and Au. See: H. V. R. Dias and W. Jin, J. Am. Chem. Soc., 1995, 117, 11 381 Search PubMed; Inorg. Chem., 1996, 35, 3687 CrossRef CAS; H. V. R. Dias and H.-L. Lu, Inorg. Chem., 1995, 34, 5380 CrossRef CAS.
  10. The Tl[TpRR′] derivatives with bulkier substituents (in both 3- and 5-positions) typically show a marked twisting of the pyrazolyl planes with respect to the Tl ⋯ B axis. For example, see: C. Dowling, D. Leslie, M. H. Chisholm and G. Parkin, Main Group Chemistry, 1995, 1, 29 Search PubMed.
  11. rcov(Tl)= 1.57 Å, rcov(N)= 0.74 Å. See: L. Pauling, The Nature of The Chemical Bond, Cornell University Press, Ithaca, 3rd edn., 1960 Search PubMed.
  12. A. Haaland, Angew. Chem., Int. Ed. Engl., 1989, 28, 992 CrossRef.
  13. Furthermore, since the thienyl group is less sterically demanding than trifluoromethyl, as judged by studies on the 3-thienyl derivative Tl[TpTn],13 such an observation is not easily rationalized as a steric effect in which increased repulsion between the substituents in the 5-position and the B-H moiety would modify the bite of the ligand such that a longer Tl-N interaction would result. See: J. C. R. Calabrese, P. J. Domaille, S. Trofimenko and G. J. Long, Inorg. Chem., 1991, 30, 2975 Search PubMed.
  14. H. V. R. Dias, H.-J. Kim, H.-L. Lu, K. Rajeshwar, N. R. de Tacconi, A. Derecskei-Kovacs and D. S. Marynick, Organometallics, 1996, 15, 2994 CrossRef CAS.
  15. The van der Waals radii of Tl and F are 1.96 Å and 1.47 Å, respectively. See: A. Bondi, J. Phys. Chem., 1964, 68, 441 Search PubMed.
  16. For reference, the Tl-F bond length in (TPP)TlF (TPP = tetraphenylporphyrinato) is 2.441(6)Å. See: A. G. Coutsolelos, M. Orfanopoulas and D. L. Ward, Polyhedron, 1991, 10, 885 Search PubMed.
  17. For a review of secondary bonding (i.e. interactions with bond lengths that are intermediate between the sum of covalent and van der Waals radii), see: N. W. Alcock, Adv. Inorg. Chem. Radiochem., 1972, 15, 1 Search PubMed.
  18. W. A. W. A. Bakar, J. L. Davidson, W. E. Lindsell, K. J. McCullough and K. W. Muir, J. Chem. Soc., Dalton Trans., 1989, 991 RSC; W. A. W. A. Bakar, J. L. Davidson, W. E. Lindsell and K. J. McCullough, J. Organomet. Chem., 1987, 322, C1 CrossRef CAS.
  19. J. A. Samuels, E. B. Lobkovsky, W. E. Streib, K. Folting, J. C. Huffman, J. W. Zwanziger and K. G. Caulton, J. Am. Chem. Soc., 1993, 115, 5093 CrossRef CAS; J. A. Samuels, J. W. Zwanziger, E. B. Lobkovsky and K. G. Caulton, Inorg. Chem., 1992, 31, 4046 CrossRef CAS.
  20. H. W. Roesky, M. Scholz, M. Noltemeyer and F. T. Edelmann, Inorg. Chem., 1989, 28, 3829 CrossRef CAS.
  21. K. Henrick, M. McPartlin, R. W. Matthews, G. B. Deacon and R. J. Phillips, J. Organomet. Chem., 1980, 193, 13 CrossRef CAS.
  22. K. Henrick, M. McPartlin, G. B. Deacon and R. J. Phillips, J. Organomet. Chem., 1981, 204, 287 CrossRef.
  23. S. Tachiyashiki, H. Nakayama, R. Kuroda, S. Sato and Y. Saito, Acta Crystallogr., Sect. B, 1975, 31, 1483 CrossRef.
  24. R. Usón, J. Forniés, M. Tomás, R. Garde and P. J. Alonso, J. Am. Chem. Soc., 1995, 117, 1837 CrossRef CAS.
  25. H. Rothfuss, K. Folting and K. G. Caulton, Inorg. Chim. Acta, 1993, 212, 165 CrossRef CAS.
  26. D. Labahn, E. Pohl, R. Herbst-Irmer, D. Stalke, H. W. Roesky and G. M. Sheldrick, Chem. Ber., 1991, 124, 1127 CAS.
  27. H. Luth and M. R. Truter, J. Chem. Soc. A, 1970, 1287 RSC.
  28. E. J. Fernández, P. G. Jones, A. Laguna and A. Mendiá, Inorg. Chim. Acta, 1994, 215, 229 CrossRef CAS.
  29. Thallium exists as two naturally occuring spin ½ isotopes: 203Tl (29.5%) and 205Tl (70.5%). Owing to the similarity of their gyromagnetic ratios, the difference in 203Tl and 205Tl coupling constants is frequently not discernible.
  30. The 203Tl NMR studies were carried out in preference to 205Tl NMR studies due to the unavailability of a suitable probe for the latter nucleus.
  31. J. F. Hinton, Magn. Reson. Chem., 1987, 25, 659 CAS; J. F. Hinton, K. R. Metz and R. W. Briggs, Prog. Nucl. Magn. Reson. Spectrosc., 1988, 20, 423 CrossRef CAS; J. F. Hinton and K. R. Metz, NMR Newly Accessible Nucl., 1983, 2, 367 Search PubMed; J. F. Hinton, K. R. Metz and R. W. Briggs, Annu. Rep. NMR Spectrosc., 1982, 13, 211 Search PubMed.
  32. V. P. Tarasov and S. I. Bakum, J. Magn. Reson., 1975, 18, 64 CAS.
  33. G. B. Deacon, R. M. Slade and D. G. Vince, J. Fluorine Chem., 1978, 11, 57 CrossRef CAS.
  34. For other JTl-F coupling constant data, see: W. Kitching, D. Praeger, C. J. Moore, D. Doddrell and W. Adcock, J. Organomet. Chem., 1974, 70, 339 Search PubMed; D. E. Fenton, D. G. Gillies, A. G. Massey and E. W. Randall, Nature (London), 1964, 201, 818 CrossRef CAS.
  35. J. A. Samuels, E. B. Lobkovsky, W. E. Streib, K. Folting, J. C. Huffman, J. W. Zwanziger and K. G. Caulton, J. Am. Chem. Soc., 1993, 115, 5093 CrossRef CAS; J. A. Samuels, J. W. Zwanziger, E. B. Lobkovsky and K. G. Caulton, Inorg. Chem., 1992, 31, 4046 CrossRef CAS.
  36. For [Tl2Zr{OCH(CF3)2}6] it was argued that since the observed JTl-F coupling constant is an average of six ‘close’1JTl-F and 30 ‘distant’JTl-F coupling constants, a value of 2298 Hz can be estimated for 1JTl-F assuming the ‘distant’JTl-F coupling constants to be close to zero.
  37. It is also worth noting that the 4JTl-F coupling constant of 850 Hz in Tl[TpCF3,Tn] is significantly greater than 4JAg-F(1.4 Hz) in the related silver complex, [Tp(CF3)2]AgPPh3. See: H. V. R. Dias, W. Jin, H.-J. Kim and H.-L. Lu, Inorg. Chem., 1996, 35, 2317 Search PubMed.
  38. A singlet is also observed at ca. –70 °C in the 19F NMR spectrum recorded in CD3OD. The resonance is, however, broadened (Δν½≈ 140 Hz) compared to that of the room temperature spectrum (Δν½≈ 7 Hz).
  39. For example, the decrease in JTl-C coupling constants for Tl[TpMe2] with increasing temperature has been attributed to a dynamic process;39a likewise, solutions of the cryptand N(CH2CH2OCH2CH2OCH2CH2)3N in the presence of Tl+ exhibit JTl-H coupling at low temperatures, but the coupling disappears at ca. 33 °C.39b Furthermore, the doublet observed at –50 °C in the 19F spectrum of [CpMo(SC6F5)2(CO)2Tl] broadens at 20 °C, a result that has also been interpreted as due to dissociation of Tl+.18 (a) D. Sanz, R. M. Claramunt, J. Glaser, S. Trofimenko and J. Elguero, Magn. Reson. Chem., 1996, 34, 843 CrossRef CAS; (b) J. M. Lehn, J. P. Sauvage and B. Dietrich, J. Am. Chem. Soc., 1970, 92, 2916 CrossRef CAS.
  40. J. J. Dechter and J. I. Zink, J. Am. Chem. Soc., 1975, 97, 2937 CrossRef CAS.
  41. For an η2-complex exhibiting rapid exchange, the observed JTl-F coupling constant is the weighted average of two contributions, involving the co-ordinated and unco-ordinated pyrazolyl groups. Assuming the two co-ordinated pyrazolyl groups to exhibit a coupling constant of 850 Hz, and the unco-ordinated pyrazolyl group to exhibit a coupling constant of 0 Hz, such a complex would exhibit an apparent coupling constant of ⅔× 850 = 566 Hz. To the extent that the η3-complex may be present in solution, or JTl-F coupling to the unco-ordinated pyrazolyl group is non-zero, the observed coupling would be expected to be greater than 566 Hz..
  42. C. López, D. Sanz, R. M. Claramunt, S. Trofimenko and J. Elguero, J. Organomet. Chem., 1995, 503, 265 CrossRef CAS.
  43. Note that the 4JTl-H coupling of 7 Hz in CDCl3 is slightly greater than that in C6D5CD3(Table 1), and is consistent with the solvent dependence of the 4JTl-F coupling constant (Table 2).
  44. S. P. Singh, S. Sehgal, L. S. Tarar and S. N. Dhawan, Indian J. Chem., Sect. B, 1990, 29, 310.
  45. B. J. Evans, J. T. Doi and W. K. Musker, J. Org. Chem., 1990, 55, 2337 CrossRef CAS.
  46. G. M. Sheldrick, SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data, University of Göttingen, 1981.