Experimental and theoretical comparison between M(cp)Cl3Ln systems of NbIV and MoIV (cp = η-C5H5)

(Note: The full text of this document is currently only available in the PDF Version )

D. Webster Keogh and Rinaldo Poli


Abstract

The controlled sodium reduction of Nb(cp)Cl4L (cp = η-C5H5; L = PMe3, PMe2Ph or PMePh2) or Nb(η-C5Me5)Cl4 in the presence of PMe3 afforded the mononuclear 15-electron complexes Nb(cp)Cl3L and Nb(η-C5Me5)Cl3(PMe3), respectively. Reduction of Nb(cp)Cl4 in the presence of an excess of L for PMe2Ph and PMePh2 afforded solids that contain mainly the 17-electron Nb(cp)Cl3L2 species but are contaminated by the mono-L derivatives. A UV/VIS investigation of the solution equilibrium between Nb(cp)Cl3(PMe2Ph)2 and Nb(cp)Cl3(PMe2Ph) plus free PMe2Ph afforded an enthalpy of 19.0 ± 1.6 kcal mol-1 and an entropy of 45 ± 5 cal K-1 mol-1 for the ligand dissociation process. A comparative study of the equilibrium between Mo(cp)Cl3(PMe2Ph)2 and Mo(cp)Cl3(PMe2Ph) plus free PMe2Ph cannot be carried out because the equilibration is too slow at room temperature and because of thermal decomposition with ring loss at high temperature. Theoretical calculations at the second-order Møller-Plesset perturbation (MP2) level on the M(cp)Cl3(PH3)n (M = Nb or Mo, n = 1 or 2) model systems afforded geometries in good agreement with experimental examples. The calculated PH3 dissociation energy for M = Nb of 21.3 kcal mol-1 is in good agreement with experiment. For M = Mo, the more saturated complex is stabilized by 32.8 kcal mol-1 relative to the excited 1A′ state and by 23.5 kcal mol-1 relative to the ground 3A″ state. Therefore, the regain of pairing energy upon PH3 dissociation from Mo(cp)Cl3(PH3)2 provides a calculated stabilization for the 16-electron monophosphine complex of 9.3 kcal mol-1. The observed variations of bonding parameters upon metal change from Nb to Mo and a natural population analysis suggest that the main reason for a greater Mo–PH3 bonding interaction is the greater extent of both M–P σ bonding and π back bonding for the d2 metal relative to the d1 metal.


References

  1. R. Poli, Acc. Chem. Res., in the press Search PubMed.
  2. R. Poli, Chem. Rev., 1996, 96, 2135 CrossRef CAS.
  3. F. Calderazzo, G. Fachinetti and C. Floriani, J. Am. Chem. Soc., 1974, 96, 3695 CrossRef CAS.
  4. H. H. Brintzinger, L. L. Lohr, jun. and K. L. T. Wong, J. Am. Chem. Soc., 1975, 97, 5146 CrossRef CAS.
  5. D. W. Keogh and R. Poli, J. Am. Chem. Soc., 1997, 119, 2516 CrossRef CAS.
  6. R. Poli, B. E. Owens and R. G. Linck, J. Am. Chem. Soc., 1992, 114, 1302 CrossRef CAS.
  7. F. Abugideiri, J. C. Gordon, R. Poli, B. E. Owens-Waltermire and A. L. Rheingold, Organometallics, 1993, 12, 1575 CrossRef CAS.
  8. J. Daran, K. Prout, A. de Cian, M. L. H. Green and N. Siganporia, J. Organomet. Chem., 1977, 136, C4 CrossRef CAS.
  9. M. J. Bunker and M. H. L. Green, J. Chem. Soc., Dalton Trans., 1981, 85 RSC.
  10. R. J. Burt, G. J. Leigh and D. L. Hughes, J. Chem. Soc., Dalton Trans., 1981, 793 RSC.
  11. J. C. Fettinger, D. W. Keogh and R. Poli, Inorg. Chem., 1995, 34, 2343 CrossRef CAS.
  12. A. M. Cardoso, R. J. H. Clark and S. Moorhouse, J. Chem. Soc., Dalton Trans., 1980, 1156 RSC.
  13. J. de la Mata, R. Fandos, M. Gomez, P. Gomez-Sal, S. Martinez-Carrera and P. Royo, Organometallics, 1990, 9, 2846 CrossRef CAS.
  14. R. Poli, S. T. Krueger, F. Abugideiri, B. S. Haggerty and A. L. Rheingold, Organometallics, 1991, 10, 3041 CrossRef CAS.
  15. K. Raner, CURVE FIT, version 0.7e, Clayton, Victoria, 1992.
  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, GAUSSIAN 94 (Revision A1), Gaussian Inc., Pittsburgh, PA, 1995.
  17. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299 CrossRef CAS.
  18. W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284 CrossRef CAS.
  19. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270 CrossRef CAS.
  20. R. Poli and H. D. Mui, Inorg. Chem., 1991, 30, 65 CrossRef CAS.
  21. R. Poli and M. A. Kelland, J. Organomet. Chem., 1991, 419, 127 CrossRef CAS.
  22. A. A. Cole, J. C. Fettinger, D. W. Keogh and R. Poli, Inorg. Chim. Acta, 1995, 240, 355 CrossRef CAS.
  23. A. Cole, J. C. Gordon, M. A. Kelland, R. Poli and A. L. Rheingold, Organometallics, 1992, 11, 1754 CrossRef CAS.
  24. S. T. Krueger, R. Poli, A. L. Rheingold and D. L. Staley, Inorg. Chem., 1989, 28, 4599 CrossRef CAS.
  25. I. Cacelli, D. W. Keogh, R. Poli and A. Rizzo, unpublished work.
  26. I. Cacelli, D. W. Keogh, R. Poli and A. Rizzo, New J. Chem., 1997, 21, 133 Search PubMed.
  27. K. Prout and J.-C. Daran, Acta Crystallogr., Sect. B, 1979, 35, 2882 CrossRef.
  28. R. Poli, Organometallics, 1990, 9, 1892 CrossRef CAS.
  29. P. Kubácek, R. Hoffmann and Z. Havlas, Organometallics, 1982, 1, 180 CrossRef CAS.
  30. Z. Lin and M. B. Hall, Organometallics, 1993, 12, 19 CrossRef CAS.
  31. R. Schmid, W. A. Herrmann and G. Frenking, Organometallics, 1997, 16, 701 CrossRef CAS.
  32. A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1 RSC.
  33. D. S. Marynick, J. Am. Chem. Soc., 1984, 106, 4064 CrossRef CAS.
  34. J. A. Tossell, J. H. Moore and J. C. Giordan, Inorg. Chem., 1985, 24, 1100 CrossRef CAS.
  35. A. G. Orpen and N. G. Connelly, Organometallics, 1990, 9, 1206 CrossRef CAS.
  36. A. G. Orpen and N. G. Connelly, J. Chem. Soc., Chem. Commun., 1985, 1310 RSC.
  37. E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, NBO, Version 3.1; A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.