Reactions of iridium and ruthenium complexes with organic azides[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Andreas A. Danopoulos, Robyn S. Hay-Motherwell, Geoffrey Wilkinson, Sean M. Cafferkey, Tracy K. N. Sweet and Michael B. Hursthouse


Abstract

Interaction of N3R with Ir(mes)3 (mes = mesityl, C6H2Me3-2,4,6) gave products dependent on the nature of the azide. When R = mes, the tetrazenido amide complex 1 is obtained in which dehydrogenative coupling of the mesityl groups via the o-methyls has occurred; thermolysis of 1 in toluene resulted in cleavage of the tetrazene ring and formation of amide complex 2. When R = Ph, the aryl tetrazenido amide complex 3 is formed. Photolysis of a mixture of N3(mes) and [RuCl2(PPh3)3] followed by phosphine exchange gave the tetrazene complex [RuIICl2{N4(mes)2 }(PMe3)2] 4. Thermal reaction of [RuCl2H2(PPri3)2] with N3(mes) gave the triazenophosphorane complex [RuCl3(PPri3){N3(mes) PPri3}] 5. The ruthenium allyl amide [Ru(PMe3)3{NHC6H3Pr i3-CH2CCH2)}] 6 bearing a new hybrid ligand was obtained by interaction of trans-[RuCl2(PMe3)4] with Li[NH(C6H3Pri2-2,6)] in di-n-butyl ether. Plausible reaction mechanisms accounting for the formation of the new compounds are proposed. Finally, the crystal structures of the complexes 1–6 have been determined. Complexes 1 and 2 have pseudo-square planar geometries involving the olefin formed by the coupled methyl groups of two mesityls and three (1) or two (2) amide nitrogens and a chlorine atom (2). Compound 3 has a trigonal bipyramidal metal centre with the axial Ir–N amide bonds longer than the equatorial ones; 4 has an octahedral structure with a bidentate tetragonal ligand and trans phosphines whilst 5 is distorted octahedral with a N,N-chelating phosphazide ligand. Complex 6 is also octahedral with the allyl groups occupying cis sites and the three Ru–P bonds in a facial arrangement.


References

  1. W. A. Nugent and J. M. Mayer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988 Search PubMed; D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239 Search PubMed.
  2. D. S. Glueck, J. Wu, F. J. Hollander and R. G. Bergman, J. Am. Chem. Soc., 1991, 113, 2041 CrossRef CAS; D. A. Dobbs and R. G. Bergman, Organometallics, 1994, 13, 4594 CrossRef CAS.
  3. A. K. Burrell and A. J. Steedman, J. Chem. Soc., Chem. Commun., 1995, 2109 RSC.
  4. (a) A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1996, 3771 RSC; (b) A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, Polyhedron, 1992, 11, 2961 CrossRef CAS.
  5. R. S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1992, 3477 RSC.
  6. R. S. Hay-Motherwell, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, Polyhedron, 1993, 12, 2009 CrossRef CAS.
  7. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 5th edn., 1988, p. 916 Search PubMed; X.-L. Luo and R. H. Crabtree, J. Am. Chem. Soc., 1989, 111, 2527 Search PubMed; R. S. Tanke and R. H. Crabtree, Organometallics, 1991, 10, 615 CrossRef CAS.
  8. M. D. Fryzuk, P. A. McNeil and S. Rettig, Organometallics, 1986, 5, 2469 CrossRef CAS.
  9. M. Rahim and K. J. Ahmet, Organometallics, 1994, 13, 1751 CrossRef CAS.
  10. P. A. S. Smith, in Azides and Nitrenes, Reactivity and Utility, ed. E. F. V. Scriven, Academic Press, Orlando, 1984, p. 104 Search PubMed.
  11. M. S. Platz, Acc. Chem. Res., 1995, 28, 487 CrossRef CAS.
  12. G. A. Miller, S. W. Lee and W. C. Trogler, Organometallics, 1989, 8, 738 CrossRef CAS.
  13. P. T. Matsunaga, C. R. Hess and G. L. Hillhouse, J. Am. Chem. Soc., 1994, 116, 3665 CrossRef CAS.
  14. P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996, 118, 100 CrossRef CAS.
  15. Y. G. Godolobov and L. F. Kasukhin, Tetrahedron, 1992, 48, 1353 CrossRef CAS.
  16. G. Proulx and R. G. Bergman, J. Am. Chem. Soc., 1995, 117, 6382 CrossRef CAS.
  17. M. G. Fickes, W. H. Davis and C. C. Cummings, J. Am. Chem. Soc., 1995, 117, 6384 CrossRef CAS.
  18. G. L. Hillhouse, G. V. Goeden and B. L. Haymore, Inorg. Chem., 1982, 21, 2064 CrossRef CAS.
  19. V. V. Mainz and R. A. Andersen, Organometallics, 1984, 3, 675 CrossRef CAS.
  20. D. M. Hankin, A. A. Danopoulos, G. Wilkinson, T. K. N. Sweet and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1996, 4063 RSC and refs. therein.
  21. A. A. Danopoulos, A. C. C. Wong, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1990, 315 RSC.
  22. K. Baum, J. Org. Chem., 1968, 33, 4333 CrossRef CAS.
  23. R. O. Lindsay and C. F. H. Allen, Org. Synth., 1955, Coll. Vol. 3, 710.
  24. T. A. Stephenson and G. Wilkinson, J. Inorg. Nucl. Chem., 1966, 28, 945 CrossRef CAS.
  25. H. Schmidbaur and G. Blaschke, Z. Naturforsch., Teil B, 1980, 35, 584 Search PubMed.
  26. C. Grunwald, O. Gevert, J. Wolf, P. Gonzalez-Herrero and H. Werner, Organometallics, 1996, 15, 1960 CrossRef CAS.
  27. A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1991, 1855 RSC.
  28. G. M. Sheldrick, SHELXS 86, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  29. G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
  30. N. P. C. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158(adapted for FAST geometry by A. Karaulov, University of Wales Cardiff, 1991) Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.