Ultrasound-promoted selective formation of optically active cyclopentadienyl ligands[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Richard Laï, Albert Archavlis, Robert Faure and Martial Sanz


Abstract

In order to prepare optically active cyclopentadienyl ligands, the chiral version of Bercaw’s synthesis of 1,2,3,4,5-pentamethylcyclopentadiene was carried out between the Grignard- or the lithium-derivatives of 1- or 2-bromopropene and the methyl ester of (-)-pinane-3-carboxylic acid I. Under conventional conditions, the condensation of the vinylic Grignard reagents with I yielded, as the major products, the unsaturated ketones VI and VII (resulting from 1,4 addition to the intermediate vinylic ketones VIII and IX) instead of the expected dienic alcohols II and III. In the case of the lithium derivatives, obtained by halogen–metal exchange between LiBut and 1- or 2-bromopropene, the same reaction gives a better selectivity towards 1,2 addition. However, the reactions are rather tedious and a large excess of reactants is needed to achieve a total reaction. When a one-pot reaction was conducted under ultrasound irradiation with lithium wire, 1- or 2-bromopropene and I, the dienic alcohols, resulting from 1,2 addition to VIII and IX are the major products. Furthermore, under these conditions, addition of LiBr affords II and III almost quantitatively. Dehydration of II or III gives optically active trisubstituted cyclopentadienes IV or V as mixtures of isomers. Single-crystal X-ray structures of the corresponding cyclopentadienyl molybdenum complexes 1 and 2 have been determined.


References

  1. A. Dormond, A. El Bouadili and C. Moise, Tetrahedron Lett., 1983, 24, 3087 CrossRef CAS.
  2. R. S. Threlkel, J. E. Bercaw, P. F. Seidler, J. M. Stryker and R. G. Bergman, Org. Synth., 1987, 65, 42 CAS.
  3. R. Laï, L. Bousquet and A. Heumann, J. Organomet. Chem., 1993, 444, 115 CrossRef CAS.
  4. D. Seebach and H. Neumann, Chem. Ber., 1974, 107, 847 CAS.
  5. L. A. Paquette and T. M. Morwick, J. Am. Chem. Soc., 1997, 119, 1230 CrossRef CAS.
  6. J.-L. Luche and J.-C. Damiano, J. Am. Chem. Soc., 1980, 102, 7926 CrossRef CAS.
  7. P. Boudjouk and B. H. Han, Tetrahedron Lett., 1981, 22, 3813 CrossRef CAS.
  8. J. C. de Souza-Barboza, C. Pétrier and J.-L. Luche, J. Org. Chem., 1988, 53, 1212 CrossRef CAS.
  9. A. Loupy and B. Tchoubar, Salt Effects in Organic and Organometallic Chemistry, VCH, Weinheim, 1992 Search PubMed.
  10. J.-M. Lefour and A. Loupy, Tetrahedron, 1978, 34, 2597 CrossRef CAS.
  11. J.-L. Luche, Advances in Sonochemistry, ed. T. J. Mason, Jai Press Ltd., London, 1990, vol. 1, pp. 119–171 Search PubMed.
  12. C. L. Hill, J. B. Vander Sande and G. M. Whitesides, J. Org. Chem., 1980, 45, 1020 CrossRef CAS.
  13. J.-L. Luche, C. Pétrier, A. L. Gemal and N. Zikra, J. Org. Chem., 1982, 47, 3805 CrossRef CAS.
  14. S. V. Ley and C. M. R. Low, Ultrasound in Synthesis, Springer-Verlag, Berlin, 1989, vol. 27 Search PubMed.
  15. C. Pétrier, J. C. de Souza-Barboza, C. Dupuy and J.-L. Luche, J. Org. Chem., 1985, 50, 5761 CrossRef CAS.
  16. T. Nishiguchi and C. Kamio, J. Chem. Soc., Perkin Trans. 1, 1989, 707 RSC.
  17. D. Stein and H. Sitzmann, J. Organomet. Chem., 1991, 402, 249 CrossRef CAS.
  18. H. O. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy, John Wiley and Sons, New York, 1988, p. 88 Search PubMed.
  19. K. Nagayama, A. Kumar, K. Wüthrich and R. R. Ernst, J. Magn. Reson., 1980, 40, 321 CAS.
  20. A. Bax and S. Subramanian, J. Magn. Reson., 1986, 67, 565 CAS.
  21. P. Raharivelomanana, J. P. Bianchini, A. Cambon, M. Azzaro and R. Faure, Magn. Reson. Chem., 1995, 33, 233 CAS.
  22. J. K. Whitesell and M. A. Minton, Stereochemical Analysis of Alicyclic Compounds by C-13 NMR Spectroscopy, Chapman and Hall, London, 1987, ch. 8, p. 113 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.