The carbonylation of allylic halides and prop-2-en-1-ol catalysed by triethylphosphine complexes of rhodium[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Marc J. Payne and David J. Cole-Hamilton


Abstract

In ethanol, [RhX(CO)(PEt3)2] added directly or formed in situ from [Rh2(OAc)4]·2MeOH (OAc = O2CMe) and PEt3 or [Rh(OAc)(CO)(PEt3)2] catalysed the carbonylation of CH2[double bond, length as m-dash]CHCH2X (X = Cl, Br or I) to ethyl but-3-enoate with CH2[double bond, length as m-dash]CHCH2OEt as a side product. Small amounts of the isomerisation product, ethyl but-2-enoate were produced but no base was required for the reaction. The selectivity of the reaction is in the order Cl > Br > I and prop-2-en-1-ol can be successfully carbonylated to prop-2-enyl but-3-enoate by the same system using 3-chloroprop-1-ene as a promoter. 3-Fluoropropene was not carbonylated, but in the presence of H2 underwent hydroformylation to produce acetals. 3-Chlorobut-1-ene and 1-chlorobut-2-ene both produced ethyl pent-3-enoate and 3-ethoxybut-1-ene. In situ and ex situ NMR and IR spectroscopic studies have been used to show that the first step of the reaction is oxidative addition to give [Rh(CH2CH[double bond, length as m-dash]CH2)Cl2(CO)(PEt 3)2] for which thermodynamic parameters have been obtained. Both 3-chlorobut-1-ene and 1-chlorobut-2-ene give [Rh(CH2CH[double bond, length as m-dash]CHMe)Cl2(CO)(PEt3) 2] but with different E∶Z ratios. The detailed mechanism of the oxidative addition is discussed. The CO inserts into the Rh–C bond to give [Rh(COCH2CH[double bond, length as m-dash]CH2)Cl2(CO)(PEt 3)2], from which but-3-enoyl chloride reductively eliminates to react with ethanol to give the observed products. High-pressure IR and high-pressure NMR studies reveal that [RhX(CO)(PEt3)2] (X = Cl or Br) reacts with CO to give [RhX(CO)2(PEt3)2], which exists as two isomeric forms. The compound [Rh(OAc)(CO)(PEt3)2] catalyses the formation of prop-2-enyl ethanoate from 1-chloroprop-2-ene and sodium ethanoate. A mechanism is proposed.


References

  1. M. Howard, M. D. Jones, M. S. Roberts and S. A. Taylor, Catal. Today, 1993, 18, 325 CrossRef.
  2. D. Foster, Adv. Organomet. Chem., 1979, 17, 255 CAS.
  3. P. M. Maitlis, A. Haynes, G. J. Sunley and M. J. Howard, J. Chem. Soc., Dalton Trans., 1996, 2187 RSC.
  4. J. K. MacDougall, M. C. Simpson, D. J. Cole-Hamilton and M. J. Green, J. Chem. Soc., Dalton Trans., 1996, 1161 RSC.
  5. M. C. Simpson, A. W. S. Curry, J. A. Andersen, D. J. Cole-Hamilton and M. J. Green, J. Chem. Soc., Dalton Trans., 1996, 1793 RSC.
  6. J. K. MacDougall, M. C. Simpson and D. J. Cole-Hamilton, Polyhedron, 1993, 12, 2877 CrossRef CAS.
  7. M. C. Simpson, K. Porteous, J. K. MacDougall and D. J. Cole-Hamilton, Polyhedron, 1993, 12, 2883 CrossRef CAS.
  8. M. L. Kantam, N. P. Reddy and B. M. Choudary, Synth. Commun., 1990, 20, 2631 CAS.
  9. E. O. Fischer and G. Buerger, Z. Naturforsch., Teil B, 1962, 17, 484 Search PubMed.
  10. G. Chiusoli and S. Merzoni, Z. Naturforsch., Teil B, 1962, 17, 850 Search PubMed.
  11. R. F. Heck, J. Am. Chem. Soc., 1963, 85, 2013 CrossRef CAS.
  12. T. Tsuji, J. Kiji, S. Imamura and M. Morikawa, J. Am. Chem. Soc., 1964, 86, 4350 CrossRef CAS.
  13. T. Okano and N. Okabe, Bull. Chem. Soc. Jpn., 1992, 65, 2589 CAS.
  14. S. Nikanischi, T. Yamamoto, N. Furukawa and T. Otsuji, Synthesis, 1994, 6, 609 CrossRef.
  15. J. F. Knifton, J. Organomet. Chem., 1980, 188, 223 CrossRef CAS.
  16. M. C. Simpson, M. J. Payne and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans., 1994, 2899 RSC.
  17. J. M. Rankin, A. C. Benyei, A. Poole and D. J. Cole-Hamilton, unpublished work.
  18. W. S. Weston, R. C. Gash and D. J. Cole-Hamilton, J. Chem. Soc., Chem. Commun., 1994, 745 RSC.
  19. R. C. Gash, D. J. Cole-Hamilton, R. Whyman, J. C. Barnes and M. C. Simpson, J. Chem. Soc., Dalton Trans., 1994, 1963 RSC.
  20. J. Chatt and B. L. Shaw, J. Chem. Soc. A, 1966, 1437 RSC.
  21. D. Forster, Inorg. Chem., 1972, 11, 1686 CrossRef CAS.
  22. G. A. Rempel, P. Legzdins, H. Smith and G. Wilkinson, Inorg. Synth., 1972, 13, 90.
  23. W. S. Weston and D. J. Cole-Hamilton, unpublished work.
  24. F. L. M. Pattison and J. J. Norman, J. Am. Chem. Soc., 1957, 79, 2311 CrossRef.
  25. H. Feuer and T. Hootz, The Chemistry of the Ether Linkage, ed. S. Patai, Wiley, New York, 1967, pp. 446–450 Search PubMed.
  26. H. D. Empsall, E. M. Hyde, C. E. Jones and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1974, 1980 RSC.
  27. T. R. Griffin, D. B. Cook, A. Haynes, J. M. Pearson, D. Monti and G. E. Morris, J. Am. Chem. Soc., 1996, 118, 3029 CrossRef CAS.
  28. N. Bérnard, M. C. Bonnet, S. Lécolier and I. Tkatchenko, J. Chem. Soc., Chem. Commun., 1993, 1448 RSC.
  29. See for example, J. March, Advanced Organic Chemistry, Wiley, New York, 1992, pp. 327–330 Search PubMed.
  30. F. Joó and H. Alper, Organometallics, 1985, 4, 1775 CrossRef.
  31. J. March, Advanced Organic Chemistry, Wiley, New York, 1992, p. 580 Search PubMed.
  32. N. Isaacs, Physical Organic Chemistry, Longman, Harlow, 1995, p. 153 Search PubMed.
  33. L. Vaska, Science, 1966, 152, 769 CAS.
  34. N. C. Payne and J. A. Ibers, Inorg. Chem., 1969, 8, 2714 CrossRef CAS.
  35. P. Piraino, F. Faraone and R. Pietrapaolo, J. Chem. Soc., Dalton Trans., 1972, 2319 RSC.
  36. P. Piraino, F. Faraone and R. Pietrapaolo, Inorg. Nucl. Chem. Lett., 1973, 9, 1237 Search PubMed.
  37. Yu. N. Kukushkin, S. A. Simonova, V. K. Krylov and V. V. Strukov, Zh. Obshch. Khim., 1977, 47, 1888 CAS; Chem. Abstr., 1977, 87, 160967v Search PubMed.
  38. R. S. Dickson, Organometallic Chemistry of Rhodium and Iridium, Academic Press, London, 1983, p. 88 Search PubMed.