d2 Complexes of tungsten containing p-toluonitrile as a four- or two-electron donor and oxidative addition giving the two-electron donor acylimido ligand NCOC6H4Me-4

(Note: The full text of this document is currently only available in the PDF Version )

Alastair J. Nielson, Patricia A. Hunt, Clifton E. F. Rickard and Peter Schwerdtfeger


Abstract

Reaction of benzonitrile with WCl6 in the presence of CCl2CCl2 gave the complex [{WCl4(NCPh)}x] of undetermined structure which does not show equivalent chemistry to the d0 complexes [{WCl4(PhC2Ph)}2] and [{WCl4(NPh)}2]. The complex [WCl22-NCC6H4Me-4) (PMe3)3] 1 can be prepared by reduction of [WCl4(PMe3)3] with 2 equivalents of Na/Hg amalgam in the presence of p-toluonitrile. The nitrile carbon in the 13C-{1H} NMR spectrum appears at δ 232.2 consistent with a four-electron donor nitrile ligand. Reaction of [WCl2(NC6H3Pri2- 2,6)(PMe3)3] with purified p-toluonitrile in refluxing toluene or reduction of [WCl3(NC6H3Pri2- 2,6)(PMe3)2] in benzene with 1 equivalent of Na/Hg amalgam in the presence of p-toluonitrile led to [WCl2(NC6H3Pri2- 2,6)(η2-NCC6H4Me-4)(PMe3 )2] 2 as shown by 1H, 13C-{1H} and 31P-{1H} NMR spectroscopy. The position of the nitrile carbon in the 13C-{1H} NMR spectrum (δ 178.9) is consistent with a two-electron donor nitrile ligand. Reaction of [WCl2(NC6H3Pri2- 2,6)(PMe3)3] with unpurified p-toluonitrile gave [WCl2(NC6H3Pri2- 2,6)(NCOC6H4Me-4)(OPMe3)(PMe3 )] 3 in addition to 2. A crystal structure determination showed cis orientated imido and acylimido ligands [W–N 1.769(5) and 1.823(6) Å, W–N–C 174.5(5) and 158.9(5)°], cis-chloro ligands and a cis orientation of the PMe3 and OPMe3 ligands. The bond lengths and angles about the NCOPh function are not significantly different to those of a variety of uncomplexed organic amide groups. Hartree–Fock and density-functional calculations performed on the model complex [WCl2(NMe)(NCOH)(OPH3)(PH3)] 4 showed structural parameters in good agreement with those of 3 when the phenyl groups were removed. An NBO (natural bond orbital) analysis of the W–NMe bond generated one σ and two π bonds between nitrogen s and p atomic orbitals (AOs) and tungsten d AOs. The nitrogen of the NCOH ligand binds to tungsten via one σ and one π bond. In contrast to the NMe ligand, the NBO analysis located a nitrogen ‘lone pair’ orbital on the NCOH ligand which overlaps somewhat with the C–O π orbitals (11% for carbon, 5% for oxygen) and with tungsten (8%). The structural and theoretical studies indicate the NMe ligand nitrogen atom dominates the π donation.


References

  1. F. A. Cotton and W. T. Hall, Inorg. Chem., 1980, 19, 2352 CrossRef CAS; 1981, 20, 1285; K. H. Theopold, S. J. Holmes and R. R. Schrock, Angew. Chem., Int. Ed. Engl., 1983, 22, 1010 Search PubMed; M. D. Curtis, J. Real and D. Kwan, Organometallics, 1989, 8, 1644 CrossRef; J. B. Hartung and S. F. Pedersen, J. Am. Chem. Soc., 1984, 111, 5468 CrossRef CAS; F. A. Cotton and M. Shang, Inorg. Chem., 1990, 29, 508; S. G. Bott, D. L. Clark, M. L. H. Green and P. Mountford, J. Chem. Soc., Dalton Trans., 1991, 471 CrossRef CAS; R. Stegmann, A. Neuhaus and G. Frenking, J. Am. Chem. Soc., 1993, 115, 11 930 RSC; P. M. Boorman, M. Wang and M. Parvez, J. Chem. Soc., Dalton Trans., 1996, 4533 CrossRef CAS; T. E. Baroni, J. A. Heppert, R. R. Hodel, R. P. Kingsborough, M. D. Morton, A. L. Rheingold and G. P. A. Yap, Organometallics, 1996, 15, 4872 RSC.
  2. A. J. Nielson, P. D. W. Boyd, G. R. Clark, T. A. Hunt, J. B. Metson, C. E. F. Rickard and P. Schwerdtfeger, Polyhedron, 1992, 11, 1419 CrossRef CAS; A. J. Nielson, P. D. W. Boyd, G. R. Clark, P. A. Hunt, M. B. Hursthouse, J. B. Metson, C. E. F. Rickard and P. A. Schwerdtfeger, J. Chem. Soc., Dalton Trans., 1995, 1153 RSC.
  3. G. R. Clark, A. J. Nielson, C. E. F. Rickard and D. C. Ware, J. Chem. Soc., Chem. Commun., 1989, 343 RSC; A. J. Nielson and D. C. Ware, Polyhedron, 1990, 9, 603 CrossRef CAS.
  4. G. R. Clark, A. J. Nielson and C. E. F. Rickard, J. Chem. Soc., Dalton Trans., 1995, 1907 RSC.
  5. L. Ricard, R. Weiss, W. E. Newton, G. J.-J. Chein and W. McDonald, J. Am. Chem. Soc., 1978, 100, 1318 CrossRef CAS; T. C. Wright, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. Chem Soc., Dalton Trans., 1986, 2017 RSC; P. A. Chetcuti, C. B. Knobler and M. F. Hawthorn, Organometallics, 1988, 7, 650 CrossRef CAS; S. J. Anderson, F. J. Wells, G. Wilkinson, B. Hussain and M. B. Hursthouse, Polyhedron, 1988, 7, 2615 CrossRef CAS; V. Saboonchian, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, Polyhedron, 1991, 10, 595 CrossRef CAS.
  6. J. Barrera, M. Sabat and W. D. Harman, J. Am. Chem. Soc., 1991, 113, 8178 CrossRef CAS; Organometallics, 1993, 12, 4381 Search PubMed.
  7. J. L. Kiplinger, A. M. Arif and T. G. Richmond, Organometallics, 1997, 16, 246 CrossRef CAS.
  8. E. Hay, F. Weller and K. Dehnicke, Z. Anorg. Allg. Chem., 1984, 514, 25 CrossRef CAS.
  9. G. R. Clark, A. J. Nielson, C. E. F. Rickard and D. C. Ware, J. Chem. Soc., Dalton Trans., 1990, 1173 RSC.
  10. D. C. Bradley, M. B. Hursthouse, K. M. A. Malik, A. J. Nielson and R. L. Short, J. Chem. Soc., Dalton Trans., 1983, 2651 RSC.
  11. E. M. Armstrong, P. K. Baker and M. G. B. Drew, Organometallics, 1988, 7, 319 CrossRef CAS; P. K. Baker, M. G. B. Drew and K. R. Flower, J. Organomet. Chem., 1990, 391, C12 CrossRef CAS.
  12. B. R. Ashcroft, A. J. Nielson, D. C. Bradley, R. J. Errington, M. B. Hursthouse and R. L. Short, J. Chem. Soc., Dalton Trans., 1987, 2059 RSC.
  13. B. R. Ashcroft, D. C. Bradley, G. R. Clark, R. J. Errington, A. J. Nielson and C. E. F. Rickard, J. Chem. Soc., Chem. Commun., 1987, 170 RSC; D. C. Bradley, R. J. Errington, M. B. Hursthouse, R. L. Short, B. R. Ashcroft, G. R. Clark, A. J. Nielson and C. E. F. Rickard, J. Chem. Soc., Dalton Trans., 1987, 2067 RSC.
  14. B. L. Haymore, E. A. Maatta and R. A. D. Wentworth, J. Am. Chem. Soc., 1979, 101, 2063 CrossRef CAS; V. C. Gibson, E. L. Marshall, C. Redshaw, W. Clegg and M. R. Elsegood, J. Chem. Soc., Dalton Trans., 1996, 4197 RSC.
  15. W. A. Nugent and J. M. Mayer, Metal–Ligand Multiple Bonds, Wiley-Interscience, New York, 1988 Search PubMed; A. Bell, W. Clegg, P. W. Dyer, M. R. J. Elsegood, V. C. Gibson and E. L. Marshall, J. Chem. Soc., Chem. Commun., 1994, 2247 Search PubMed.
  16. J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211 CrossRef CAS; A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066 CrossRef CAS; A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735 CrossRef CAS; J. E. Carpenter and F. Weinhold, J. Mol. Struct. (Theochem.), 1988, 169, 41 CrossRef; A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS.
  17. P. R. Sharp, J. C. Bryan, J. M. Mayer, J. L. Templeton and S. Feng, Inorg. Synth., 1990, 28, 326 CAS.
  18. A. C. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351 CrossRef.
  19. G. M. Sheldrick, SHELXL 93, Program for the refinement of crystal structures, University of Göttingen, 1993.
  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Comperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92/DFT, revision F.3 ed, Gaussian Inc., Pittsburgh, PA, 1993.
  21. J. C. Slater, Quantum Theory of Molecular Solids, McGraw-Hill, New York, 1974, vol. 4 Search PubMed.
  22. S. H. Vosko, L. Wilk and N. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  23. E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, NBO Program Manual, 3rd edn., Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, 1990 Search PubMed.
  24. G. Schaftenaar, MOLDEN, CAOS/CAMM Center, Nijmegen, 1991.
Click here to see how this site uses Cookies. View our privacy policy here.