Metal complexes of the angiotensin-converting enzyme inhibitor, lisinopril. Solution studies and the crystal and molecular structure of a dimeric copper(II)–lisinopril complex

(Note: The full text of this document is currently only available in the PDF Version )

Elena Bermejo Gonzalez, Etelka Farkas, Ali A. Soudi, Terence Tan, Alexander I. Yanovsky and Kevin B. Nolan


Abstract

The binding of the angiotensin-converting enzyme inhibitor lisinopril to zinc(II), copper(II) and nickel(II) has been investigated in solution by pH-metric methods and the crystal structure of the dimeric copper(II)–lisinopril complex, [Cu2(HA)2(H2O)2][ClO4 ]2 (H4A2+ = fully protonated lisinopril), has been determined. In the case of the metal ions investigated a major species present in neutral or weakly acidic solution is M(HA)+, the formation constants of which suggest that co-ordination to the metal ions occurs through the amino nitrogen, carboxylate oxygen and the amide oxygen atoms. The crystal structure of the dimeric copper complex shows that each copper is in a distorted square-pyramidal environment in which the basal plane is occupied by carboxylate (Cu–O 1.944 Å) and carbonyl (Cu–O 1.996 Å) oxygens, and an amino group nitrogen (Cu–N 1.989 Å) from one ligand as well as the prolyl carboxylate of another ligand (Cu–O 1.909 Å). An aqua ligand Cu–O (2.355 Å) is axially bonded to each copper.


References

  1. R. Beaglehole, R. Bonita and T. Kjellstrom, in Basic Epidemiology, World Health Organisation, Geneva, 1993, p. 8 Search PubMed.
  2. S. Oparil, in Cecil Textbook of Medicine, eds. J. C. Bennett and F. Plum, W. B. Saunders, Philadelphia, 20th edn., 1996, pp. 256–271 Search PubMed.
  3. W. G. J. Hol, Angew. Chem., Int. Ed. Engl., 1986, 25, 767 CrossRef.
  4. R. J. Hansin and P. W. Codding, J. Med. Chem., 1990, 33, 1940 CrossRef.
  5. C. Pascard, J. Guilhem, M. Vincent, G. Remond, B. Porteven and M. Laubie, J. Med. Chem., 1991, 34, 663 CrossRef CAS.
  6. B. L. Vallee and D. S. Auld, Proc. Natl. Acad. Sci. USA, 1990, 87, 225.
  7. T. Kiss, in Biocoordination Chemistry, ed. K. Burger, Ellis Horwood, Chichester, 1990, ch. III, Table 3.2 Search PubMed.
  8. I. Sovago, in Biocoordination Chemistry, ed. K. Burger, Ellis Horwood, Chichester, 1990, ch. IV Search PubMed.
  9. P. Daniele and G. Ostacoli, Ann. Chim. (Rome), 1977, 67, 311 Search PubMed.
  10. B. J. Hathaway, in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 5, pp. 619–635 Search PubMed.
  11. D. Van der Helm and W. A. Franks, J. Am. Chem. Soc., 1968, 90, 5627 CrossRef CAS.
  12. A. I. Vogel, A Textbook of Quantitative Chemical Analysis, Longmans, Essex, 5th edn., 1989, ch. 10 Search PubMed.
  13. E. Farkas, E. Kozma, T. Kiss, I. Toth and B. Kurzak, J. Chem. Soc., Dalton Trans., 1995, 447 Search PubMed.
  14. L. Zekany and I. Nagypal, in Computational Methods for the Determination of Formation Constants, ed. D. J. Leggett, Plenum, New York, 1985 Search PubMed.
  15. G. M. Sheldrick, SHELXTL PLUS, Siemens Analytical X-Ray Instruments, Madison, WI, 1989.
Click here to see how this site uses Cookies. View our privacy policy here.