Synthesis, multinuclear magnetic resonance spectroscopic studies and crystal structures of mono- and di-selenoether complexes of tin(IV) halides

(Note: The full text of this document is currently only available in the PDF Version )

Sandra E. Dann, Anthony R. J. Genge, William Levason and Gillian Reid


Abstract

Reaction of SnX4 (X = Cl or Br) with Me2Se or diselenoether ligands in dry CHCl3 produced white or yellow solids [SnX4L2] in high yield [X = Cl, L2 = MeSe(CH2)n SeMe, PhSe(CH2)nSePh (n = 2 or 3), C6H4(SeMe)2-o or 2Me2Se; X = Br, L2 = MeSe(CH2)n SeMe (n = 2 or 3), C6H4(SeMe)2-o or 2Me2Se]. These compounds have been characterised by a combination of variable-temperature 1H, 119Sn-{1H} and 77Se-{1H} NMR, IR spectroscopy and microanalyses. Single-crystal X-ray diffraction studies on trans-[SnX4(SeMe2)2], [SnX4{C6H4(SeMe)2- o}] (X = Cl or Br) and [SnCl4{MeSe(CH2)3SeMe}] confirm distorted octahedral geometry at SnIV in each case, with the bidentate ligands chelating. The C6H4(SeMe)2-o complexes adopt the meso arrangement, while the ligand is in the DL form in [SnCl4{MeSe(CH2)3SeMe}]. The trends in d(Sn–X) and d(Sn–Se) reveal that the trans influence of halide is greater than that of selenium in these systems. In comparable systems d(Sn–Se) is longer in the bromo than in the chloro systems, consistent with the greater Lewis acidity of SnCl4. The NMR studies revealed that pyramidal-inversion and ligand-dissociation processes are facile. In the SeMe2 complexes both cis and trans isomers are present, while in the diselenoether systems the meso and DL forms are both apparent at low temperatures. The co-ordination shifts in the 77Se-{1H} NMR spectra are markedly dependent upon chelate-ring size; the first time this has been observed for complexes of a p-block metal.


References

  1. I. R. Beattie, Q. Rev. Chem. Soc., 1963, 17, 382 RSC.
  2. N. C. Norman and N. L. Pickett, Coord. Chem. Rev., 1995, 145, 27 CrossRef CAS.
  3. S. E. Dann, A. R. J. Genge, W. Levason and G. Reid, J. Chem. Soc., Dalton Trans., 1996, 4471 RSC.
  4. S. J. Ruzicka and A. E. Merbach, Inorg. Chim. Acta., 1976, 20, 221 CrossRef CAS; 1977, 22, 191; S. J. Ruzicka, C. M. P. Favez and A. E. Merbach, Inorg. Chim. Acta, 1977, 23, 239 Search PubMed.
  5. E. W. Abel, S. K. Bhargava, K. G. Orrell and V. Sik, Inorg. Chim. Acta, 1981, 49, 25 CrossRef CAS.
  6. N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Chem. Commun., 1994, 695 RSC.
  7. PATTY, The DIRDIF Program System, P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. O. Gould, J. M. M. Smits and C. Smykalla, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1992.
  8. TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1992.
  9. N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 CrossRef.
  10. D. J. Gulliver, E. G. Hope, W. Levason, S. G. Murray, D. M. Potter and G. L. Marshall, J. Chem. Soc., Perkin Trans 2, 1984, 429 RSC.
  11. C. T. G. Knight and A. E. Merbach, Inorg. Chem., 1985, 24, 576 CrossRef CAS.
  12. E. G. Hope and W. Levason, Coord. Chem. Rev., 1993, 122, 109 CrossRef CAS.
  13. P. E. Garrou, Chem. Rev., 1981, 81, 229 CrossRef CAS.
  14. J. G. Verkade and L. D. Quin(Editors), Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis, VCH, Deerfield Beach, FL, 1987 Search PubMed.
  15. E. G. Hope, T. Kemmitt and W. Levason, J. Chem. Soc., Perkin Trans. 2, 1987, 487 RSC.
  16. G. M. Sheldrick, SHELXS 86, program for crystal structure solution, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.