Synthesis, reactivity and structures of hafnium-containing homo- and hetero- (bi- and tri-) metallic alkoxides based on edge- and face-sharing bioctahedral alkoxometalate ligands[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Michael Veith, Sanjay Mathur, Charu Mathur and Volker Huch


Abstract

Using [{Hf(OPri)4(PriOH)}2 ] as a building-block precursor, a series of homo- and hetero-metallic alkoxides of hafnium has been prepared and characterised using elemental analyses, infrared, multinuclear (1H, 7Li, 13C and 113Cd) NMR and single-crystal X-ray diffraction studies. The solid-state structure of [Hf2(OPri)8(PriOH)2 ] 1 reveals an edge-shared bioctahedral structure with the co-ordinated alcohol forming a hydrogen bridge across the dinuclear unit. The reactions of 1 with other nitrogen- or oxygen-containing donors gave monosubstituted products of the general formula [Hf2(OPri)8(PriOH)L] (L = C5H5N 2 or C4H8O2 3) which retain the dinuclear edge-sharing bioctahedral structure as determined for 2 by X-ray crystallography. Compound 1 reacted (1[hair space]:[hair space]2) with LiBun or LiOPri to afford dimeric [{LiHf(OPri)5}2] 4. The molecular structure of 4 can be conceived as a dianionic [Hf2(OPri)10]2- unit that binds two Li+ one on each side of the Hf–Hf vector which are additionally co-ordinated by the bridging OPri groups to display a trigonal-pyramidal geometry at the lithium atoms. The Hf2O6Li2 core in 4 comprises two analogous seconorcubane subunits sharing a common face defined by a Hf2O2 ring. Equimolar reaction of CuCl2 and [KHf2(OPri)9] afforded the monomeric halide heterobimetallic derivative [CuHf2Cl(OPri)9] 5. Compound 5 is paramagnetic and follows Curie law behaviour as inferred by a variable-temperature 1H NMR study. In the solid state its molecular geometry could be formally seen as a tetradentate interaction of the distorted confacial bioctahedron [Hf2(OPri)9]- with a CuCl+ fragment. Each Hf is six-co-ordinated; Cu is five-co-ordinated and displays a distorted trigonal-bipyramidal geometry. The reaction (1[hair space]:[hair space]1) of [CdHf2I(OPri)9] with KSr(OPri)3 produced a new heterotermetallic derivative [{[Cd(OPri)3]Sr[Hf2(OPri )9]}2] 6. This involves the switching of central metal atoms between the two precursors and the Hf2(OPri)9 unit in 6 binds to Sr rather than Cd as anticipated. The centrosymmetric dimeric form of 6 is made up of a [Sr(µ-OPri)2Cd(µ-OPri)2 Cd(µ-OPri)2Sr]2+ spirocyclic unit capped at both the ends by [Hf2(OPri)9]- moieties.


References

  1. G. J. Ashwell, (Editor), Molecular Electronics, Wiley, New York, 1992 Search PubMed.
  2. R. C. Mehrotra, A. Singh and S. Sogani, Chem. Rev., 1994, 94, 1643 CrossRef CAS; K. G. Caulton and L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90, 969 CrossRef CAS.
  3. W. S. Rees, jun.(Editor), CVD of Non-metals, VCH, Weinheim, 1996 Search PubMed.
  4. D. C. Bradley, R. C. Mehrotra and D. P. Gaur, Metal Akoxides, Academic Press, London, 1978 Search PubMed.
  5. M. J. Hampden-Smith, T. A. Wark, A. Rheingold and J. C. Huffman, Can. J. Chem., 1991, 69, 121 CAS.
  6. B. A. Vaartstra, J. C. Huffman, P. S. Gradeff, L. G. Hubert-Pfalzgraf, J. C. Daran, S. Parrand, K. Yunulu and K. G. Caulton, Inorg. Chem., 1990, 29, 3126 CrossRef.
  7. C. Favotto, A. Margaillan and M. Roubin, Ann. Chim. (Paris), 1996, 21, 13 Search PubMed.
  8. M. Veith, S. Mathur and V. Huch, Inorg. Chem., (a) 1996, 35, 7295; (b) in the press Search PubMed.
  9. H. Nagamoto, K. Amanuma, H. Nobutomo and H. Inoue, Chem. Lett, 1988, 2, 237.
  10. H. Maeda, Y. Tanaka, M. Fukutomi and T. Asane, Jpn. J. Appl. Phys., 1988, 27, L209 CAS.
  11. P. Pereira, S. H. Lee, G. A. Somaraji and H. Heinemann, Catal. Lett., 1990, 6, 255 CrossRef CAS.
  12. M. Veith, S. Mathur and V. Huch, J. Am. Chem. Soc., 1996, 118, 903 CrossRef CAS.
  13. R. J. Cava, R. B. van Dover, B. Batlagg and E. A. Rietman, Phys. Rev. Lett., 1987, 58, 408 CrossRef CAS.
  14. (a) A. A. Pinkerton, D. Schwarzenbach, L. G. Hubert-Pfalzgraf and J. G. Riess, Inorg. Chem., 1976, 15, 1196 CrossRef CAS; (b) E. P. Turevskaya, N. Ya. Turova, A. V. Korolev, A. I. Yanovsky and Yu. T. Struchkov, Polyhedron, 1995, 14, 1531 CrossRef CAS.
  15. M. Chisholm and D. L. Clark, Comments Inorg. Chem., 1987, 6, 23 CAS.
  16. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  17. M. Veith, Chem. Rev., 1990, 90, 3 CrossRef CAS.
  18. M. J. Hampden-Smith, D. S. Williams and A. L. Rheingold, Inorg. Chem., 1990, 29, 4076 CrossRef.
  19. M. Veith, S. Mathur and V. Huch, J. Chem. Soc., Dalton Trans., 1996, 2485 RSC.
  20. B. A. Vaartstra, J. A. Samuels, E. H. Barash, J. D. Martin, W. E. Streib, C. Gasser and K. G. Caulton, J. Organomet. Chem., 1993, 449, 191 CrossRef CAS.
  21. D. Reinen and C. Friebel, Inorg. Chem., 1984, 23, 791 CrossRef CAS; J. D. Blanchette and R. D. Willett, Inorg. Chem., 1988, 27, 843 CrossRef CAS.
  22. M. Veith and S. Mathur, unpublished work.
  23. S. C. Goel, M. Y. Chiang and W. E. Buhro, J. Am. Chem. Soc., 1991, 112, 6724.
  24. A. I. Vogel, A Textbook of Quantitative Inorganic Analysis, Longmans, London, 1978 Search PubMed.
  25. M. Westerhausen, Inorg. Chem., 1991, 30, 96 CrossRef CAS.
  26. G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, 1986.
  27. G. M. Sheldrick, SHELXS 93, Program for Crystal Structure Determination, University of Göttingen, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.