Molecular manganese sulfide clusters formed by laser ablation[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Ian G. Dance, Keith J. Fisher and Gary D. Willett


Abstract

Laser ablation of solid MnS yields in the gas phase polysulfane cations [MnSn]+ (4 ⩽ n ⩽ 11), and anionic clusters [MnxSx]- and [MnxSx+1]- (2 ⩽ x ⩽ 22), together with clusters [MnxSxO]- (4 ⩽ x ⩽ 22) formed from adventitious water. These ions were detected and investigated further by Fourier-transform ion cyclotron resonance mass spectrometry. There are no major discontinuities in abundance or especially stable structures in the series [MnxSx]- and [MnxSx+1]-. There are some differences in the distributions of ions formed by the pink and green forms of solid MnS, with the pink form generating more sulfur vapour and polysulfane cations, and the green form more suitable for the formation of cluster anions. The cations [MnSn]+ lose S2 on collisional activation. The cluster anions [MnxSy]- are generally unreactive and not oxidised by N2O, but on reaction with H2S (g) they undergo protonation or add one or two S atoms to form also the new products [MnxSx+2]- (4 ⩽ x ⩽ 8). The compositions [MnxSx]- and [MnxSx+1]- represent a well defined region of stability for anions, and for the neutral clusters from which they are believed to be formed by electron attachment.


References

  1. J. H. El Nakat, I. G. Dance, K. J. Fisher, D. Rice and G. D. Willett, J. Am. Chem. Soc., 1991, 113, 5141 CrossRef.
  2. J. H. El Nakat, I. G. Dance, K. J. Fisher and G. D. Willett, Inorg. Chem., 1991, 30, 2957 CrossRef CAS.
  3. H. J. El-Nakat, I. G. Dance, K. J. Fisher and G. D. Willett, J. Chem. Soc., Chem. Commun., 1991, 746 RSC.
  4. J. H. El Nakat, K. J. Fisher, I. G. Dance and G. D. Willett, Inorg. Chem., 1993, 32, 1931 CrossRef CAS.
  5. I. G. Dance and K. J. Fisher, Prog. Inorg. Chem., 1994, 41, 637 CAS.
  6. I. G. Dance and K. J. Fisher, Mater. Sci. Forum, 1994, 152, 137 Search PubMed.
  7. I. G. Dance, K. J. Fisher and G. D. Willett, Angew. Chem., Int. Ed. Engl., 1995, 34, 201 CrossRef CAS.
  8. I. G. Dance, K. J. Fisher and G. D. Willett, J. Chem. Soc., Chem. Commun., 1995, 975 RSC.
  9. I. G. Dance, K. J. Fisher and G. D. Willett, Inorg. Chem., 1996, 35, 4177 CrossRef CAS.
  10. K. J. Fisher, I. G. Dance and G. D. Willett, Rapid Commun. Mass Spectrom., 1996, 10, 106 CrossRef CAS.
  11. K. J. Fisher, I. G. Dance, G. D. Willett and M. Yi, J. Chem. Soc., Dalton Trans., 1996, 709 RSC.
  12. K. J. Fisher and I. G. Dance, Polyhedron, 1997, in the press Search PubMed.
  13. H. Wiedemeier and P. W. Gilles, J. Chem. Phys., 1965, 42, 2765 CrossRef CAS.
  14. G. Brauer, Handbook of Preparative Inorganic Chemistry, Academic Press, New York, London, 1963 Search PubMed.
  15. F. Jellinek, Inorganic Sulfur Chemistry, ed. G. Nickless, Elsevier, Amsterdam, 1968, pp. 669–747 Search PubMed.
  16. F. Hulliger, Struct. Bonding (Berlin), 1968, 4, 83 CAS.
  17. R. D. W. Kemmitt, Comprehensive Inorganic Chemistry, Pergamon, Oxford, 1968, p. 813 Search PubMed.
  18. L. Corliss, N. Elliott and J. Hastings, Phys. Rev., 1956, 104, 924 CrossRef CAS.
  19. D. R. Huffman and R. L. Wild, Phys. Rev., 1966, 148, 526 Search PubMed.
  20. D. C. Parent, Chem. Phys. Lett., 1991, 183, 45 CrossRef CAS.
  21. D. Feldmann, R. Rackwitz, H. J. Kaiser and E. Heinecke, Z. Naturforsch., Teil A, 1977, 32, 600.
  22. M. R. Nimlos and G. B. Ellison, J. Phys. Chem., 1986, 90, 2574 CrossRef CAS.
  23. N. Zhang, H. Kawamata, A. Nakajima and K. Kaya, J. Chem. Phys., 1996, 104, 36 CrossRef CAS.
  24. P. J. Ziemann and A. W. Castleman, Phys. Rev. B, 1992, 46, 13 480 CrossRef CAS.
  25. X. G. Zhang, personal communication, 1995.
  26. I. G. Dance and K. J. Fisher, following paper.
  27. D. Coucouvanis, P. Patil, M. G. Kanatzidis, B. A. Detering and N. C. Baenziger, Inorg. Chem., 1985, 24, 24 CrossRef CAS.
  28. R. L. Bedard, S. T. Wilson, L. D. Vail, J. M. Bennett and E. M. Flanigen, Zeolites: Facts, Figures, Future, eds. P. A. Jacobs and R. A. van Santen, Elsevier, Amsterdam, 1989, pp. 375–387 Search PubMed.
  29. H. O. Stephan, C. Chen, G. Henkel, K. Griesar and W. Haase, J. Chem. Soc., Chem. Commun., 1993, 886 RSC.
  30. H. O. Stephan and G. Henkel, Angew. Chem., Int. Ed. Engl., 1994, 33, 2322 CrossRef.
  31. H. O. Stephan, M. G. Kanatzidis and G. Henkel, Angew. Chem., Int. Ed. Engl., 1996, 35, 2135 CrossRef CAS.
  32. J. L. Seela, K. Folting, R. J. Wang, J. C. Huffman, G. Christou, H. R. Chang and D. N. Hendrickson, Inorg. Chem., 1985, 24, 4454 CrossRef CAS.
  33. J. L. Seela, J. C. Huffman and G. Christou, J. Chem. Soc., Chem. Commun., 1985, 58 RSC.
  34. A. D. Watson, C. P. Rao, J. R. Dorfman and R. H. Holm, Inorg. Chem., 1985, 24, 2820 CrossRef CAS.
  35. C. P. Rao, J. R. Dorfman and R. H. Holm, Inorg. Chem., 1986, 25, 428 CrossRef CAS.
  36. P. P. Power and S. C. Shoner, Angew. Chem., Int. Ed. Engl., 1991, 30, 330 CrossRef.
  37. S. Dev, E. Ramli, T. B. Rauchfuss and S. R. Wilson, Inorg. Chem., 1991, 30, 2514 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.