Equilibrium and solution structural study of the proton, copper(II), nickel(II) and zinc(II) complexes of 1-(2-aminoethylamino)-1-deoxy-D-galactitol

(Note: The full text of this document is currently only available in the PDF Version )

Béla Gyurcsik, Tamás Gajda, Attila Jancsó, René Lammers and László Nagy


Abstract

Protonation and copper(II), nickel(II) and zinc(II) complex-formation equilibria of 1-(2-aminoethylamino)-1-deoxy-D-galactitol and the solution co-ordination structure of the complexes were investigated by potentiometric titrations, UV/VIS absorption, CD, EPR and 13C NMR spectroscopies in aqueous solution (I = 0.1 mol dm-3, NaClO4; T = 298 K). In acidic media the ethane-1,2-diamine (en) residue dominates the co-ordination for all the metal ions studied, but the spectroscopic results are consistent with weak co-ordination of alcoholic hydroxy group(s). In equimolar solution and at neutral pH, dialkoxide-bridged dimeric species were formed with nickel(II) and copper(II). In case of an excess of galactitol bis- and tris-complexes were also detected. In the latter system metal-promoted deprotonation occured above pH 9 and in this way the second ligand is successively displaced from the co-ordination sphere of copper(II). In the finally formed MLH-2 species the ligand is co-ordinated by two amino and two deprotonated alcoholic hydroxy groups. Nickel(II) formed a ML2H-2 complex in the alkaline pH region. The deprotonation processes of the ZnL2 complex leading also to ML2H-2 took place at almost the same pH as for NiL2. Evidence of the deprotonation of the alcoholic hydroxy groups is available only above pH ≈ 11 in the zinc(II)-containing system.


References

  1. M. Jezowska-Bojczuk, H. Kozlowski, S. Lamotte, P. Decock, A. Temeriusz, I. Zajaczkowski and J. Stepinski, J. Chem. Soc., Dalton Trans., 1995, 2657 RSC and refs. therein.
  2. H. Lammers, H. van Bekkum and J. A. Peters, Carbohydr. Res., 1996, 284, 159 CrossRef CAS; H. Lammers, J. A. Peters and H. van Bekkum, Tetrahedron, 1994, 50, 8103 CrossRef CAS.
  3. W. F. Zeng, Ch. P. Cheng, S. M. Wang, M.-Ch. Cheng, G.-H. Lee and Y. Wang, Inorg. Chem., 1995, 34, 728 CrossRef CAS; T. Lindgren, R. Sillanpää, K. Rissanen, L. K. Thompson, C. J. O'Connor, G. A. van Albada and J. Reedijk, Inorg. Chin. Acta, 1990, 171, 95 Search PubMed.
  4. T. Kiss, in Handbook on Metal–Ligand Interactions in Biological Fluids, ed. G. Berthon, Marcell Dekker, New York, 1990, vol. 1, p. 666 Search PubMed.
  5. I. Sóvágó, in Biocoordination Chemistry, ed. K. Burger, Ellis Horwood, London, 1990 Search PubMed.
  6. H. Kozlowski, P. Decock, I. Olivier, G. Micera, A. Pusino and L. D. Pettit, Carbohydr. Res., 1990, 197, 109 CrossRef CAS and refs. therein.
  7. Th. Kradolfer and K. Hegetschweiler, Helv. Chim. Acta, 1992, 75, 2243 CrossRef CAS; K. Hegetschweiler, V. Gramlich, M. Ghisletta and H. Samaras, Inorg. Chem., 1992, 31, 2341 CrossRef CAS.
  8. K. Burger, L. Nagy and B. Gyurcsik, J. Mol. Liq., 1995, 65/66, 213 CrossRef and refs. therein.
  9. E. Högfeldt, in Stability Constants of Metal–Ion Complexes, Part A. Inorganic Ligands, Pergamon, New York, 1982, p. 32 Search PubMed.
  10. L. Zékány and I. Nagypál, in Computational Methods for the Determination of Formation Constants, ed. D. J. Leggett, Plenum, New York, 1991 Search PubMed.
  11. A. Rockenbauer and L. Korecz, Appl. Magn. Reson., 1996, 10, 29 CrossRef CAS.
  12. J. Maslowska and J. Szmich, Pol. J. Chem., 1984, 58, 675 CAS.
  13. A. Avdeef, J. Zabronski and H. H. Stuting, Anal. Chem. (USA), 1983, 55, 298 Search PubMed.
  14. R. M. Smith and A. E. Martell, in Critical Stability Constants, Plenum, New York, 1975, vol. 2, p. 95 Search PubMed.
  15. S. J. Angyal, Carbohydr. Res., 1990, 200, 181 CrossRef CAS.
  16. Ch. F. Bates and R. E. Mesmer, in The Hydrolysis of Cations, Wiley, New York, 1976 Search PubMed.
  17. J. A. Bertrand, E. Fujita and D. G. VanDerveer, Inorg. Chem., 1980, 19, 2022 CrossRef CAS; B. P. Murphy, Coord. Chem. Rev., 1993, 124, 63 CrossRef CAS; S. P. Perlepes, J. C. Huffman, G. Christou and S. Paschalidou, Polyhedron, 1995, 14, 1073 CrossRef CAS.
  18. P. R. Bontchcv, H. Kadum, B. Evtimova, Ch. Nachcv, E. Yhcchcva, D. Mehandjiev and D. Ivanov, J. Inorg. Biochem., 1992, 48, 153 CrossRef; T. Kiss, Cs. Simon and Zs. Vachter, J. Coord. Chem., 1987, 16, 225 CAS; I. Murase, M. Tanaka, Sh. Ueno, H. Okawa and S. Kida, Bull. Chem. Soc. Jpn., 1982, 55, 2404 CAS.
  19. J. R. Watson, C. I. Shyr and C. Trapp, Inorg. Chem., 1968, 7, 469 CrossRef; K. D. Karlin, A. Farooq, J. C. Hayes, B. I. Cohen, T. M. Rowe, E. Sinn and J. Zubieta, Inorg. Chem., 1987, 26, 1271 CrossRef CAS.
  20. D. E. Lewis, W. E. Hatfield and D. J. Hodgson, Inorg. Chem., 1972, 11, 2216 CrossRef CAS; S. J. Loeb, J. W. L. Martin and Ch. J. Willis, Inorg. Chem., 1979, 18, 3160 CrossRef CAS.
  21. R. Barbucci, L. Fabrizzi, P. Paoletti and A. Vacca, J. Chem. Soc., Dalton Trans., 1972, 740 RSC; C. Arcus, K. P. Fivizzani and S. F. Pavkovic, J. Inorg. Nucl. Chem., 1977, 39, 285 CrossRef CAS.
  22. E. J. Billo, Inorg. Nucl. Chem. Lett., 1974, 10, 613 Search PubMed.
  23. F. S. Richardson, Chem. Rev., 1979, 79, 17 CrossRef CAS.
  24. B. A. Goodman, D. B. McPhail and H. K. J. Powell, J. Chem. Soc., Dalton Trans., 1981, 822 RSC and refs. therein.
  25. (a) W. S. Kittl and B. M. Rode, J. Chem. Soc., Dalton Trans., 1983, 409 RSC; (b) T. Szabó-Plánka, G. Peintler, A. Rockenbauer, M. Gyoőr, M. Varga-Fáián, L. Institórisz and L. Balázspiri, J. Chem. Soc., Dalton Trans., 1989, 1925 RSC.
  26. V. J. Thöm, M. S. Shaikjee and R. D. Hancock, Inorg. Chem., 1986, 25, 2992 CrossRef CAS.
  27. C. K. Jörgensen, Acta Chem. Scand., 1956, 10, 887 CAS.
  28. T. Tsubomura, S. Yano, K. Toriumi, T. Ito and S. Yoshikawa, Inorg. Chem., 1985, 24, 3218 CrossRef CAS.
  29. J. G. Batchelor, J. Feeny and G. C. K. Roberts, J. Magn. Reson., 1975, 20, 19 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.