Ability of terephthalate (ta) to mediate exchange coupling in ta-bridged copper(II), nickel(II), cobalt(II) and manganese(II) dinuclear complexes

(Note: The full text of this document is currently only available in the PDF Version )

Juan Cano, Giovanni De Munno, José Luis Sanz, Rafael Ruiz, Juan Faus, Francesc Lloret, Miguel Julve and Andrea Caneschi


Abstract

The exchange coupling between the unpaired electrons of divalent first-row transition-metal ions MII (M = Cu, Ni, Co or Mn) bridged by the terephthalate (ta) ligand (intramolecular metal–metal separation ca. 10 Å) has been systematically studied. The following complexes have been synthesized: [Cu2(bipy)4(ta)][ClO4]2 1, [Cu2(terpy)2(H2O)2(ta)] [ClO4]2 2, [Ni2(bipy)4(ta)][ClO4]2 3, [Co2(bipy)4(ta)][ClO4]2 4, [Mn2(phen)4(H2O)2(ta)][ClO 4]2 5 and [Mn2(phen)4(ta)][ClO4]2 6 (bipy = 2,2′-bipyridine, terpy = 2,2′[hair space]:[hair space]6′,2″- terpyridine, phen = 1,10-phenanthroline). Complexes 1, 2, 4 and 5 have been characterized by single-crystal X-ray analysis. Complex 6 was obtained by thermal dehydration of 5 at 60 °C or under vacuum at room temperature. The structures have in common the presence of cationic terephthalate-bridged [M2(ta)]2+ dinuclear units with bidentate (1, 3–6) and terdentate (2) blocking ligands and unco-ordinated perchlorate counter ions. A co-ordinated water molecule per metal ion is present in complexes 2 and 5. Variable-temperature magnetic susceptibility data for all the complexes have been measured over the range 2.0–298 K. In 1–5 only very weak antiferromagnetic coupling has been observed [J ca. -2.2 (1), -0.01 (2), -0.6 (3), -0.3 (4) and -0.065 cm-1 (5), the Hamiltonian being [H with combining macron]; = -J[S with combining macron] A·[S with combining macron]B with SA = SB = ½ (1, 2), 1 (3), 3/2 (4) and 5/2 (5)]. In contrast to the lack of magnetic interaction detected for complex 5, a significant antiferromagnetic coupling (J = -1.6 cm-1; maximum of susceptibility at 8.0 K) is observed in its dehydrated phase (6). The magnetostructural data and theoretical calculations demonstrate the low efficiency of terephthalate as a bridge to mediate exchange interactions between first-row transition-metal ions. The significant exchange coupling observed in 6 is due to the occurrence of a carboxylate bridge between the manganese(II) ions induced by a carboxylate-assisted loss of the co-ordinated water molecule.


References

  1. Magneto-Structural Correlations in Exchange Coupled Systems, eds. R. D. Willet, D. Gatteschi and O. Kahn, Reidel, Dordrecht, 1985 Search PubMed.
  2. O. Kahn, Molecular Magnetism, VCH, Weinheim, 1993 Search PubMed.
  3. W. E. Hatfield, in Magneto-Structural Correlations in Exchange Coupled Systems, eds. R. D. Willet, D. Gatteschi and O. Kahn, Reidel, Dordrecht, 1985, p. 555 Search PubMed.
  4. V. M. Crawford, M. W. Richardson, J. R. Wasson, D. J. Hodgson and W. E. Hatfield, Inorg. Chem., 1976, 15, 2107 CrossRef.
  5. R. E. Coffman and G. R. Buettner, J. Phys. Chem., 1979, 18, 2387 CrossRef.
  6. N. F. Curtis, I. R. N. McCormick and T. N. Waters, J. Chem. Soc., Dalton Trans., 1973, 1537 RSC.
  7. T. R. Felthouse, E. J. Laskowski and D. N. Hendrickson, Inorg. Chem., 1977, 16, 1077 CrossRef CAS.
  8. M. Julve, M. Verdaguer, A. Gleizes, M. Philoche-Levisalles and O. Kahn, Inorg. Chem., 1984, 23, 3808 CrossRef CAS.
  9. M. Verdaguer, O. Kahn, M. Julve and A. Gleizes, Nouv. J. Chim., 1985, 9, 325 Search PubMed.
  10. H. Okawa, N. Matsumoto, M. Koikawa, K. Takeda and S. Kida, J. Chem. Soc., Dalton Trans., 1990, 1383 RSC.
  11. J. J. Girerd, S. Jeannin, Y. Jeannin and O. Kahn, Inorg. Chem., 1978, 17, 3034 CrossRef CAS.
  12. R. Vicente, J. Ribas, S. Alvarez, A. Seguí, X. Solans and M. Verdaguer, Inorg. Chem., 1987, 26, 4004 CrossRef CAS.
  13. X. Solans, M. Aguiló, A. Gleizes, J. Faus, M. Julve and M. Verdaguer, Inorg. Chem., 1990, 29, 775 CrossRef CAS.
  14. I. Castro, J. Sletten, J. Faus, Y. Journaux, F. Lloret and S. Alvarez, Inorg. Chem., 1992, 31, 1889 CrossRef CAS.
  15. F. Tinti, M. Verdaguer, O. Kahn and J. M. Savariault, Inorg. Chem., 1987, 26, 2380 CrossRef CAS.
  16. O. Kahn, Angew. Chem., 1985, 97, 837 CrossRef CAS; Angew. Chem., Int. Ed. Engl., 1985, 24, 834 and refs. therein Search PubMed.
  17. M. Julve, M. Verdaguer, J. Faus, F. Tinti, J. Moratal, A. Monge and E. Gutiérrez-Puebla, Inorg. Chem., 1987, 26, 3520 CrossRef CAS.
  18. T. R. Felthouse, T. Y. Dong, D. N. Hendrickson, H. S. Shieh and M. R. Thompson, J. Am. Chem. Soc., 1986, 108, 8201 CrossRef CAS.
  19. P. Chaudhuri, K. Oder, K. Wieghardt, S. Gehring, W. Haase, B. Nuber and J. Weiss, J. Am. Chem. Soc., 1988, 110, 3657 CrossRef CAS.
  20. M. Verdaguer, J. Gouteron, S. Jeannin, Y. Jeannin and O. Kahn, Inorg. Chem., 1984, 23, 4291 CrossRef CAS.
  21. E. G. Bakalbassis, C. Tsipis, A. Bozopoulos, W. Dreisig, H. Hartl and J. Mrozinski, Inorg. Chim. Acta, 1991, 186, 113 CrossRef CAS.
  22. C. E. Xanthopoulos, M. P. Sigalas, G. A. Katsoulos, C. A. Tsipis, A. Terzis, M. Mentzafos and A. Hountas, Inorg. Chem., 1993, 32, 5433 CrossRef CAS.
  23. E. G. Bakalbassis and C. A. Tsipis, Inorg. Chem., 1985, 24, 4231 CrossRef CAS.
  24. K. S. Bürger, P. Chaudhuri, K. Wieghardt and B. Nuber, Chem. Eur. J., 1995, 1, 583 CrossRef.
  25. Z. L. Deng, J. Shi, Z. H. Jiang, D. Z. Liao, S. P. Yan, G. L. Wang, H. G. Wang and R. J. Wang, Polyhedron, 1992, 11, 885 CrossRef CAS.
  26. A. C. T. North, D. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351 CrossRef.
  27. SHELXTL PLUS, Version 4.11/V, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1990.
  28. M. Nardelli, Comput. Chem., 1983, 7, 95 CrossRef CAS.
  29. G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227 CrossRef CAS.
  30. J. Cano, G. De Munno, J. Sanz, R. Ruiz, F. Lloret, J. Faus and M. Julve, J. Chem. Soc., Dalton Trans., 1994, 3465 RSC.
  31. L. L. Merrit and D. Schroeder, Acta Crystallogr., 1956, 9, 801 CrossRef.
  32. E. G. Bakalbassis, A. P. Bozopoulos, J. Mrozinski, P. J. Rentzaperis and C. A. Tsipis, Inorg. Chem., 1988, 27, 529 CrossRef CAS.
  33. D. P. Anderson, A. B. Packard and M. Nicolas, Inorg. Chem., 1976, 15, 1613 CrossRef.
  34. I. Castro, J. Faus, M. Julve and A. Gleizes, J. Chem. Soc., Dalton Trans., 1991, 1937 RSC and refs. therein.
  35. T. J. R. Weakley, Acta Crystallogr., Sect. B, 1978, 34, 3756 CrossRef.
  36. S. R. Holleman, O. J. Parker and G. L. Breneman, Acta Crystallogr., Sect. C, 1994, 50, 867 CrossRef.
  37. A. P. Ginsberg, R. L. Martin, R. W. Brookes and R. C. Sherwood, Inorg. Chem., 1972, 11, 2884 CrossRef CAS.
  38. G. De Munno, M. Julve, F. Lloret and A. Derory, J. Chem. Soc., Dalton Trans., 1993, 1179 RSC.
  39. M. E. Lines, J. Chem. Phys., 1971, 55, 2977 CrossRef CAS.
  40. E. Coronado, M. Drillon, P. R. Nugteren, L. J. de Jongh and D. Beltrán, J. Am. Chem. Soc., 1988, 110, 3907 CrossRef CAS.
  41. G. De Munno, M. Julve, F. Lloret, J. Faus and A. Caneschi, J. Chem. Soc., Dalton Trans., 1994, 1175 RSC.
  42. E. G. Bakalbassis, J. Mrozinski and C. A. Tsipis, Inorg. Chem., 1986, 25, 3684 CrossRef CAS.
  43. E. G. Bakalbassis, P. Bergerat, O. Kahn, S. Jeannin, Y. Jeannin, Y. Dromzee and M. Guillot, Inorg. Chem., 1992, 31, 625 CrossRef CAS.
  44. O. Kahn, Struct. Bonding (Berlin), 1987, 68, 89 CAS and refs. therein.
  45. J. J. Girerd, M. F. Charlot and O. Kahn, Mol. Phys., 1977, 34, 1063 CAS.
  46. O. Kahn and M. F. Charlot, Nouv. J. Chim., 1980, 4, 567 Search PubMed.
  47. C. Erasmus and W. Haase, Spectrochim. Acta, Part A, 1994, 50, 2189 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.