Racemization kinetics and spin states of four-co-ordinate nickel(II) N2X2 Schiff-base and aza complexes with bi- or tetra-dentate ligands incorporating pyrazole (X = NH or S)[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Agnete la Cour, Matthias Findeisen, Kim Hansen, Rita Hazell, Lothar Hennig, Carl E. Olsen, Lars Pedersen and Ole Simonsen


Abstract

Bis(bidentate ligand) and tetradentate ligand nickel(II) N2X2 Schiff-base and aza complexes (X = NH or S) have been prepared and their properties investigated by spectroscopic methods. In the bis(bidentate ligand) complexes the aza function stabilizes the low-spin S = 0 state compared with the imine function. The aza complexes are low spin both in the solid state and in solution; the Schiff-base complexes are either low or high spin (S = 1) in the solid state, and are either in spin equilibrium (S = 0 ⇌ S = 1) or high spin in solution. The crystal structure has been solved for the high-spin complex bis(4-isopropyliminomethyl-1,3-diphenylpyrazol-5-ylaminato)nickel( II). The co-ordination of Ni is pseudo-tetrahedral, the angle between the N–Ni–NH and NH′–Ni–N′ planes being 93.8(1)°. The Ni–N (imine) bond lengths are 1.999(2) and 2.003(3) Å, significantly longer than the Ni–N (amine) bond lengths of 1.919(2) Å. In the tetradentate ligand complexes the two identical halves of the ligands are linked by aliphatic four-carbon chains. When the linkage is CMe2(CH2)2CMe2 the complexes are fully paramagnetic in the solid state and in solution, while complexes bridged by unsubstituted (CH2)4 are low spin in the solid state and in spin equilibrium in solution. The crystal structure of [N,N′-bis(1,3-dimethyl-5-sulfanylpyrazol-4- ylmethylene)butane-1,4-diaminato]nickel(II) reveals an almost planar co-ordination geometry, the angle between the N–Ni–S and S′–Ni–N′ planes being 7.9(3)°. The Schiff-base complexes are chiral and all show evidence of racemization in solution. Thermodynamic parameters for the spin-equilibrium process in CD2Cl2 [ΔG(25 °C) from -4.32 to 0.71 kJ mol-1 for the bis(bidentate ligand) systems, from 3.72 to 11.3 kJ mol-1 for the tetradentate ligand systems] and kinetic parameters for the racemization process in CD2Cl2 or CDCl2CDCl2 [ΔG[hair space](25 °C) from 40.5 to 53.3 kJ mol-1 for the bis(bidentate ligand) complexes, 46.5 to 63.1 kJ mol-1 for the tetradentate ligand complexes] have been derived using variable-temperature 1H NMR spectroscopy. Sulfur donor atoms and aryl substituents favour the low-spin state. Ligand-field parameters for the Schiff-base complexes have been derived from the electronic spectra.


References

  1. (a) L. H. Pignolet, W. DeW. Horrocks, jun. and R. H. Holm, J. Am. Chem. Soc., 1970, 92, 1855 CrossRef CAS; (b) L. Que, jun. and L. H. Pignolet, Inorg. Chem., 1973, 12, 156 CrossRef; (c) H. Frydendahl, H. Toftlund, J. Becker, J. C. Dutton, K. S. Murray, L. F. Taylor, O. P. Anderson and E. R. T. Tiekink, Inorg. Chem., 1995, 34, 4467 CrossRef CAS.
  2. (a) R. Knorr, A. Weiss, H. Polzer and E. Räpple, J. Am. Chem. Soc., 1977, 99, 650 CrossRef CAS; (b) L. E. Nivorozhkin, A. L. Nivorozhkin, M. S. Korobov, L. E. Konstantinovsky and V. I. Minkin, Polyhedron, 1985, 4, 1701 CrossRef CAS; (c) A. la Cour, B. Adhikhari, H. Toftlund and A. Hazell, Inorg. Chim. Acta, 1992, 202, 145 CrossRef CAS.
  3. G. Hinsche, E. Uhlemann, D. Zeigan and G. Engelhardt, Z. Chem., 1981, 21, 414 CAS.
  4. (a) A. L. Nivorozhkin, H. Toftlund, P. L. Jørgensen and L. E. Nivorozhkin, J. Chem. Soc., Dalton Trans., 1996, 1215 RSC; (b) A. la Cour, M. Findeisen, A. Hazell, R. Hazell and G. Zdobinsky, J. Chem. Soc., Dalton Trans., 1997, 121 RSC; (c) A. la Cour, M. Findeisen, R. Hazell, L. Hennig, C. E. Olsen and O. Simonsen, J. Chem. Soc., Dalton Trans., 1996, 3437 RSC; (d) O. P. Anderson, A. la Cour, M. Findeisen, L. Hennig, O. Simonsen, L. F. Taylor and H. Toftlund, J. Chem. Soc., Dalton Trans., 1997, 111 RSC; (e) L. Hennig, R. Kirmse, O. Hammerich, S. Larsen, H. Frydendahl, H. Toftlund and J. Becher, Inorg. Chim. Acta, 1995, 234, 67 CrossRef CAS.
  5. (a) A. L. Nivorozhkin, H. Toftlund, L. E. Nivorozhkin, I. A. Kamenetskaya, A. S. Antsishkina and M. A. Porai-Koshits, Transition Met. Chem., 1994, 19, 319 CrossRef CAS; (b) S. S. Sheldrick, R. Knorr and H. Polzer, Acta Crystalogr., Sect. B, 1979, 35, 739 Search PubMed; (c) D. Dale, J. Chem. Soc. A, 1967, 278 RSC; (d) N. A. Bailey and E. D. McKenzie, Inorg. Chim. Acta, 1980, 43, 205 CrossRef CAS; (e) N. A. Bailey, E. D. McKenzie and J. M. Worthington, J. Chem. Soc., Dalton Trans., 1974, 1363 RSC; (f) B. Adhikhari, A. la Cour, R. Hazell, C. E. Olsen and H. Toftlund, unpublished work.
  6. (a) A. D. Garnovskii, A. L. Nivorozhkin and V. I. Minkin, Coord. Chem. Rev., 1993, 126, 1 CrossRef CAS; (b) A. L. Nivorozhkin, S. E. Konstantinovsky, L. E. Nivorozhkin, V. I. Minkin, T. G. Takhirov, O. A. Diachenko and D. B. Tagiev, Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 327 Search PubMed (in Russian).
  7. S. K. Sur, J. Magn. Reson., 1989, 82, 169 CAS.
  8. I. Y. Kvitko, L. V. Alam, N. I. Rtishchev, A. V. Eltsov, L. N. Kuriovskaya and N. B. Chebotareva, J. Gen. Chem. USSR (Engl. Transl.), 1982, 2048 Search PubMed.
  9. R. H. Holm, Acc. Chem. Res., 1969, 2, 307 CrossRef CAS.
  10. H. Toftlund, A. L. Nivorozhkin, A. la Cour, B. Adhikhari, K. S. Murray, G. D. Fallon and L. E. Nivorozhkin, Inorg. Chim. Acta, 1995, 228, 237 CrossRef CAS.
  11. A. L. Nivorozhkin, L. E. Nivorozhkin, V. I. Minkin, T. G. Takhirov and O. A. Diachenko, Polyhedron, 1991, 10, 179 CrossRef CAS.
  12. R. H. Holm and K. Swaminathan, Inorg. Chem., 1962, 1, 599 CrossRef CAS.
  13. R. H. Holm, G. W. Everett, jun. and A. Chakravorty, Prog. Inorg. Chem., 1966, 7, 83 CAS.
  14. (a) D. H. Gerlach and R. H. Holm, J. Am. Chem. Soc., 1969, 91, 3457 CrossRef CAS; (b) I. Bertini, L. Sacconi and G. P. Speroni, Inorg. Chem., 1972, 11, 1323 CrossRef CAS; (c) H. R. Engeseth, D. R. McMillin and E. L. Ulrich, Inorg. Chim. Acta, 1982, 67, 145 CrossRef CAS; (d) E. M. Martin and R. D. Bereman, Inorg. Chim. Acta, 1991, 188, 233 CrossRef CAS.
  15. (a) D. A. Cruse and M. Gerloch, J. Chem. Soc., Dalton Trans., 1976, 152 Search PubMed; (b) R. H. Holm and K. Swaminathan, Inorg. Chem., 1963, 2, 181 CrossRef CAS.
  16. M. Gerloch, Coord. Chem. Rev., 1990, 99, 117 CrossRef CAS.
  17. (a) R. Knorr and A. Weiss, Chem. Ber., 1981, 114, 2104 CAS; (b) R. Knorr and F. Ruf, J. Am. Chem. Soc., 1979, 101, 5424 CrossRef CAS; (c) R. Knorr and F. Ruf, Angew. Chem., 1984, 96, 350 CAS.
  18. J. Becher, K. Pluta, N. Krake, K. Brøndum, N. J. Christensen and M. V. Vinader, Synthesis, 1985, 530; J. Becher, P. L. Jørgensen, H. Frydendahl and B. F. Hansen, Synthesis, 1991, 603.
  19. (a) B. R. McGarvey, Inorg. Chem., 1995, 34, 6000 CrossRef CAS; (b) W. D. Perry and R. S. Drago, J. Am. Chem. Soc., 1971, 93, 2183 CrossRef.
  20. A. B. P. Lever, Inorganic Electronic Spectroscopy, 2nd edn., Elsevier, Amsterdam, 1984, pp. 818–820 Search PubMed.
  21. (a) H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25, 1228 CrossRef CAS; (b) A. Allerhand, H. S. Gutowsky, J. Jonas and R. A. Meinzer, J. Am. Chem. Soc., 1966, 88, 3185 CrossRef CAS.
  22. (a) C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, TN, 1976; (b) M. S. Lehmann and F. K. Larsen, Acta Crystallogr., Sect. A, 1974, 30, 580 CrossRef; (c) G. M. Sheldrick, SHELXS 86, Program for the Solution of Crystal Structures, University of Göttingen, 1986; (d) R. Norrestam and K. Nielsen, Technical University of Denmark, personal communication, 1982; (e) S. R. Hall, H. D. Flack and J. M. Stewart(Editors), XTAL 3.2 Reference Manual, University of Western Australia and Maryland, 1992 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.