Potentiometric and spectroscopic study of ternary complexes of copper(II), substituted 1,10-phenanthrolines and oxidised glutathione

(Note: The full text of this document is currently only available in the PDF Version )

Paola Piu, Gavino Sanna, Andreina Masia, Maria Antonietta Zoroddu and Renato Seeber


Abstract

A series of ternary systems consisting of copper(II), oxidised glutathione (a S–S′ bonded hexapeptide) and five differently substituted 1,10-phenanthrolines has been studied in aqueous solvent in the range pH 3–8. The stability constants of the complexes formed, together with the relevant distributions as a function of pH, have been evaluated by elaboration of data from acid–base potentiometric titrations. Electron paramagnetic resonance and electronic spectroscopy have been used to identify the chromophore in the 1[hair space]:[hair space]1[hair space]:[hair space]1 complexes, i.e. the ternary species are in all cases the predominant ones at pH close to the physiological values. The data from the spectroscopic measurements, when considered together with the trend in stability constant values, allowed reasonable hypotheses about the effect of the substituents on the phenanthroline ring on the stability and configuration of the complexes.


References

  1. E. M. Kosower, Glutathione: Metabolism and Function, eds. I. M. Arias and W. B. Jakobi, Raven Press, New York, 1976, p. 1 Search PubMed.
  2. C. C. Tsen and A. L. Tappel, J. Biol. Chem., 1958, 233, 1230 CAS.
  3. K. Kobashi, Biochem. Biophys. Acta, 1968, 158, 239 Search PubMed.
  4. I. G. Fels, Exp. Eye Res., 1971, 12, 227 CrossRef CAS.
  5. P. Piu, G. Sanna, M. A. Zoroddu, R. Seeber, R. Basosi and R. Pogni, J. Chem. Soc., Dalton Trans., 1995, 1267 RSC.
  6. G. Charlot, Chimie Analitique Quantitative, Masson, Paris, 1974 Search PubMed.
  7. P. Gans, A. Sabatini and A. Vacca, J. Chem. Soc., Dalton Trans., 1985, 1195 RSC.
  8. A. D. Troy, C. H. H. Chaston and T. R. Pilbrow, Inorg. Chem., 1970, 10, 2219.
  9. L. V. Banks and R. I. Bystroff, J. Am. Chem. Soc., 1959, 81, 6153 CrossRef.
  10. W. A. E. McBryde, D. A. Brisbin and H. Irving, J. Chem. Soc., 1962, 5251 Search PubMed.
  11. D. A. Brisbin and W. A. E. McBryde, Can. J. Chem., 1963, 41.
  12. H. Irving and D. H. Mellor, J. Chem. Soc., 1962, 5239 Search PubMed.
  13. H. Sigel, Angew. Chem., Int. Ed. Engl., 1975, 14, 394 CrossRef.
  14. H. Sigel, B. E. Fischer and B. Prijs, J. Am. Chem. Soc., 1977, 99, 4489 CrossRef CAS.
  15. B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 1970, 5, 143 CrossRef CAS.
  16. B. J. Hathaway and A. A. G. Tomlinson, Coord. Chem. Rev., 1970, 5, 1 CrossRef CAS.
  17. A. Battaglia, G. Bonamartini Corradi, L. Marcotrigiano, G. Menabue and C. Pellacani, Inorg. Chem., 1979, 18, 148 CrossRef.
  18. M. Elleb, J. Meullemeestre, M. J. Schwing-Weill and F. Vierling, Inorg. Chem., 1982, 21, 1477 CrossRef CAS.
  19. G. Antolini, L. Marcotrigiano, G. Menabue, C. Pellacani, M. Saladini and M. Sola, Inorg. Chem., 1985, 24, 3621 CrossRef.
  20. B. E. Fischer and H. Sigel, J. Am. Chem. Soc., 1980, 102, 2998 CrossRef CAS.
  21. A. Gergely, I. Sovago, I. Nagypal and R. Kiraly, Inorg. Chim. Acta, 1972, 6, 435 CrossRef CAS.
  22. M. A. Zoroddu, S. Zanetti, R. Pogni and R. Basosi, J. Inorg. Biochem., 1996, 63, 291 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.