Preparation, structure and properties of trinuclear [M3Se4(CN)9]5- (M = Mo or W) complexes obtained from M3Se7 core compounds and related studies

(Note: The full text of this document is currently only available in the PDF Version )

Vladimir P. Fedin, Gert J. Lamprecht, Takamitsu Kohzuma, William Clegg, Mark R. J. Elsegood and A. Geoffrey Sykes


Abstract

The preparations of [Mo3Se4(CN)9]5- and [W3Se4(CN)9]5- by reacting polymeric {M3Se7Br4}x or the derivative [M3Se7Br6]2- ions (M = Mo or W) with CN- are described. Both products were isolated as the Cs5[M3Se4(CN)9]· CsCl·4H2O salts. The crystal structures are essentially the same with corresponding cell dimensions within 0.3% of each other, and those for the W compound slightly the larger. The M3Se4 cores (approximate symmetry C3v) can be described as distorted incomplete cubes with, in the tungsten case, dave(W–W) 2.829, dave(W–µ-Se) 2.449, dave(W–µ3-Se) 2.497, dave(W–C) 2.179 and dave(C–N) 1.16 Å. A different feature as compared to the sulfide analogues is the weak dimerisation of two trimer units giving short Se · · · Se contacts (≈3.5 Å). The UV/VIS spectra of brown [Mo3Se4(CN)9]5- and green [W3Se4(CN)9]5- indicate a red shift on replacing Mo by W, and a similar shift on exchanging S for Se. In electrochemical studies using cyclic, square-wave and differential pulse voltammetric techniques reduction potentials for the [M3Se4(CN)9]5-/6- couple (vs. normal hydrogen electrode) of -0.63 (Mo) and -0.97 V (W) were obtained. Using a Hg–Au electrode two additional reduction steps were observed, and there is evidence for the formation of Hg-containing heterometallic clusters. Properties of the two aqua ions [M3Se7(H2O)6]4+ were also studied, where these are similarly converted to [M3Se4(CN)9]5- by Se-abstraction and substitution of H2O by CN-.


References

  1. T. Shibahara, Adv. Inorg. Chem., 1991, 37, 143–173.
  2. F. A. Cotton, Z. Dori, R. Llusar and W. Schwotzer, J. Am. Chem. Soc., 1985, 107, 6734 CrossRef CAS.
  3. M. Martinez, B.-L. Ooi and A. G. Sykes, J. Am. Chem. Soc., 1987, 109, 4615 CrossRef CAS.
  4. T. Shibahara, A. Takeuchi, A. Ohtsuji, K. Kohda and H. Kuroya, Inorg. Chim. Acta, 1987, 127, 145.
  5. B.-L. Ooi and A. G. Sykes, Inorg. Chem., 1989, 28, 3799 CrossRef CAS.
  6. M. Nasreldin, A. Olatunji, P. W. Dimmock and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1990, 1765 RSC.
  7. D. M. Saysell, M. N. Sokolov and A. G. Sykes, ACS Symp. Ser., 1996, 653, 216–224.
  8. M. Nasreldin, C. A. Routledge and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1994, 2809 RSC.
  9. V. P. Fedin, M. N. Sokolov and A. G.. Sykes, J. Chem. Soc., Dalton Trans., 1996, 4089 RSC.
  10. V. P. Fedin, G. J. Lamprecht and A. G. Sykes, J. Chem. Soc., Chem. Commun., 1994, 2685 RSC.
  11. D. M. Saysell, V. P. Fedin, M. N. Sokolov, G. J. Lamprecht and A. G. Sykes, Inorg. Chem., in the press Search PubMed.
  12. M. D. Meienberger, K. Hegetschweiler, H. Rielgger and V. Granlich, Inorg. Chim. Acta, 1993, 213, 157 CrossRef CAS.
  13. V. P. Fedin, M. N. Sokolov, O. A. Geras'ko, A. V. Virovets, N. V. Podberezskaya and V. Y. Fedorov, Inorg. Chim. Acta, 1991, 187, 81 CrossRef CAS.
  14. V. P. Fedin, H. Imoto, T. Saito, W. McFarlane and A. G. Sykes, Inorg. Chem., 1995, 34, 5097 CrossRef CAS.
  15. M. Nasreldin, G. Henkel, G. Kampmann, B. Krebs, G. J. Lamprecht, C. A. Routledge and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 737 RSC.
  16. G. J. Lamprecht, M. Martinez, M. Nasreldin, C. A. Routledge, N. Al-Shatti and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 747 RSC.
  17. V. P. Fedin, M. N. Sokolov, A. V. Virovets, N. V. Podberezskaya and V. Y. Federov, Polyhedron, 1992, 11, 2973 CrossRef CAS.
  18. W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22 CrossRef.
  19. G. M. Sheldrick, SHELXTL manual, revision 5, Siemens Analytical X-Ray Instruments, Madison, WI, 1994.
  20. A. Müller, R. Jostes, W. Eltzner, C.-S. Nie, E. Diemann, H. Bögge, M. Zimmermann, M. Dartmann, U. Reinsch-Vogell, S. Che, S. J. Cyvin and B. N. Cyvin, Inorg. Chem., 1985, 24, 2872 CrossRef.
  21. F. H. Allen and O. Kennard, Chem. Des. Autom. News, 1993, 8, 31 Search PubMed.
  22. B.-L. Ooi, A. L. Petrou and A. G. Sykes, Inorg. Chem., 1988, 27, 3626 CrossRef CAS.
  23. J. Li, C.-W. Liu and J.-X. Lu, J. Chem. Soc., Faraday Trans., 1994, 90, 39 RSC.
  24. V. P. Fedin and A. G. Sykes, unpublished work.
  25. P. J. Vergamini, H. Vahrenkamp and L. F. Dahl, J. Am. Chem. Soc., 1971, 93, 6327 CrossRef CAS.
  26. W. Beck, W. Danzer and G. Thiel, Angew. Chem., Int. Ed. Engl., 1973, 12, 582 CrossRef.
  27. K. Wieghardt, W. Herrmann, A. Müller, W. Eltzner and M. Zimmermann, Z. Naturforsch., Teil B, 1984, 39, 876 Search PubMed.
  28. T. Shibahara, M. Yamasaki, G. Sakane, K. Minami, T. Yabuki and A. Ichimura, Inorg. Chem., 1992, 31, 640 CrossRef CAS.
  29. F. A. Cotton, R. Llusar and C. T. Eagle, J. Am. Chem. Soc., 1989, 111, 4332 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.