Thermal and photochemical reactions of bis(diamine)(sulfito)cobalt(III) complexes: effect of chelate-ring size

(Note: The full text of this document is currently only available in the PDF Version )

Anadi C. Dash, Kishore C. Jena, Ansuman Roy, Dipti Mukherjee and Sukumar Aditya


Abstract

The kinetics of formation of cis-[Co(tn)2(OH2)(OSO2-O )]+ (tn = 1,3-diaminopropane), its acid-catalysed aquation to the parent diaqua complex, anation of trans-[Co(tn)2(OH2)(SO3- S[hair space])]+ by N3-, NCS-, SO32-–HSO3- , anation of trans-[Co(tn)2(OH)(SO3-S [hair space])] by SO32- and acid-catalysed aquation of trans-[Co(tn)2(SO3-S[hair space]) 2]- to the corresponding (aqua)(sulfito-S[hair space]) complex were investigated and the results compared with analogous data for the corresponding 1,2-diaminoethane (en) complexes. Expanding the chelate-ring size from five to six had virtually no effect on the rate of formation of the sulfito-O complex, but retarded its acid-catalysed aquation. The latter effect was attributed to a pK perturbation; intramolecular hydrogen bonding between the co-ordinated H2O and sulfite in cis-[Co(tn)2(OH2)(OSO2-O )]+ hindered the protonation pre-equilibrium of the sulfito-O complex involved in the acid-catalysed aquation. This is further supported by the fact that there was no ring-size effect on the acid-catalysed aquation of trans-[Co(L–L)2(OH2)(OSO2) ]+ (L–L = tn or en). The strong labilising action due to chelate-ring expansion is remarkably attenuated by the trans effect of S-bonded sulfite as observed in the anation of trans-[Co(L–L)2(OH2/OH)(SO3 -S[hair space])]+/0. However, trans-[Co(tn)2(OH2)(SO3- S[hair space])]+ was found to be prone to intramolecular electron transfer between CoIII and SIV under thermal conditions unlike its en analogue, further reflecting the ring-size effect. Flash photolysis of trans-[Co(L–L)2(OH2)(SO3 -S[hair space])]+ (L–L = en or tn) generated the transient trans-[Co(L–L)2(OH2)(OSO2 )]+. The photochemical ligand isomerisation of both complexes (CoIII–SO3+ → CoIII–OSO2+) also occurred at comparable rates [kiso = (4.1 ± 0.8) × 104 and (3.2 ± 1.3) × 104 s-1 at 25 °C for the en and tn complexes respectively]. Steady-state photolysis at 254 nm indicated that trans-[Co(en)2(OH2)(SO3-S [hair space])]+ underwent photoaquation and photoreduction. Strikingly photoreduction could not be detected for this complex at pH > 8.


References

  1. R. van Eldik, J. V. Jouanne and H. Kelm, Inorg. Chem., 1982, 21, 2818 CrossRef CAS.
  2. A. N. Acharya and A. C. Dash, Proc. Indian Acad. Sci. (Chem. Sci.), 1993, 105, 225 Search PubMed.
  3. A. A. El-Awady and G. M. Harris, Inorg. Chem., 1981, 20, 1660 CrossRef CAS.
  4. A. C. Dash, A. A. El-Awady and G. M. Harris, Inorg. Chem., 1981, 20, 3160 CrossRef CAS.
  5. J. Kraft and R. van Eldik, Inorg. Chem., 1985, 24, 3391 CrossRef CAS.
  6. A. C. Dash and A. K. Patnaik, J. Chem. Res., 1995, (S) 230; (M) 1529 Search PubMed.
  7. W. G. Jackson, Inorg. Chem., 1988, 27, 777 CrossRef CAS.
  8. A. C. Dash, A. N. Acharya and A. K. Patnaik, Proc. Indian Acad. Sci. (Chem. Sci.), 1995, 107, 533 Search PubMed.
  9. D. R. Stanks and J. K. Yandell, Inorg. Chem., 1970, 9, 751 CrossRef CAS.
  10. V. K. Joshi, R. van Eldik and G. M. Harris, Inorg. Chem., 1986, 25, 229.
  11. A. C. Dash and B. Padhy, Indian J. Chem., Sect. A, 1989, 28, 1054.
  12. A. C. Dash and K. C. Jena, Transition Met. Chem., in the press Search PubMed.
  13. J. K. Yandell and L. A. Tomlins, Aust. J. Chem., 1978, 31, 561 CAS.
  14. L. Richards and J. Halpern, Inorg. Chem., 1976, 15, 2571 CrossRef CAS.
  15. R. C. Elder, M. J. Heeg, M. D. Payne, M. Trukla and E. Deutsch, Inorg. Chem., 1978, 17, 431 CrossRef CAS.
  16. C. L. Raston, A. H. White and J. K. Yandell, Aust. J. Chem., 1980, 33, 419 CAS.
  17. G. D. Fallon, C. L. Raston, A. H. White and J. K. Yandell, Aust. J. Chem., 1980, 33, 665 CAS.
  18. A. C. Dash, R. K. Nanda and N. Ray, J. Coord. Chem., 1982, 12, 91.
  19. A. D. Fowless and D. R. Stranks, Inorg. Chem., 1977, 16, 1276 CrossRef CAS.
  20. C. N. R. Rao, Chemical Application of Infrared Spectroscopy, Academic Press, New York, 1963 Search PubMed.
  21. A. A. El-Awady and G. M. Harris, Inorg. Chem., 1981, 20, 4256.
  22. M. E. Baldwin, J. Chem. Soc., 1961, 3123 RSC.
  23. C. A. Parker, Proc. R. Soc. London, Ser. A, 1953, 220, 104 Search PubMed; C. G. Hatchard and C. A. Parker, Proc. R. Soc. London, Ser A, 1956, 235, 518 Search PubMed.
  24. J. G. Calvert, and J. N. Pitts, jun., Photochemistry, 2nd edn., Wiley, New York, 1966, ch. 7, p. 797 Search PubMed.
  25. R. E. Kitson, Anal. Chem., 1950, 22, 664 CrossRef CAS.
  26. A. E. Martell and R. J. Motekaitis, Determination and Use of Stability Constants, 2nd edn., VCH, New York, 1992, p. 22 Search PubMed.
  27. R. E. Connick, T. M. Tam and E. v. Deuster, Inorg. Chem., 1982, 21, 103 CrossRef CAS.
  28. Critical Stability Constants, eds. R. M. Smith and A. E. Martell, Plenum, New York, 1976, vol. 4, p. 45 Search PubMed.
  29. R. van Eldik and G. M. Harris, Inorg. Chem., 1980, 19, 880 CrossRef CAS.
  30. A. C. Dash, A. Roy and S. Aditya, Indian J. Chem., Sect. A, 1986, 25, 207.
  31. L. Dogliotti and E. Hayon, Nature (London), 1968, 218, 9495.
  32. L. Dogliotti and E. Hayon, J. Phys. Chem., 1968, 72, 1800 CrossRef CAS.
  33. T. P. Dasgupta and G. M. Harris, Inorg. Chem., 1984, 23, 4399 CrossRef CAS.
  34. R. D. Hancock, Acc. Chem. Res., 1990, 23, 253 CrossRef CAS.
  35. A. Stromberg, O. Gropen, O. Wahlgren and U. Lindqvist, Inorg. Chem., 1983, 22, 1129 CrossRef.
  36. A. A. El-Awady and G. M. Harris, Inorg. Chem., 1986, 25, 1323 CrossRef CAS.
  37. E. O. Schlemper, P. K. Sengupta and T. P. Dasgupta, Acta Crystallogr., Sect. C, 1983, 39, 1012 CrossRef.
  38. J. Chin, Acc. Chem. Res., 1991, 24, 145 CrossRef CAS.
  39. S. M. Farrell and R. S. Murray, J. Chem. Soc., Dalton Trans., 1977, 322 RSC.
  40. F. Basolo and R. G. Pearson, Mechanisms of Inorganic Reactions, 2nd edn., Wiley, New York, 1967, p. 162 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.