Stabilization of copper(III) complexes by disubstituted oxamides and related ligands

(Note: The full text of this document is currently only available in the PDF Version )

Rafael Ruiz, Céline Surville-Barland, Ally Aukauloo, Elodie Anxolabehere-Mallart, Yves Journaux, Joan Cano and M. Carmen Muñoz


Abstract

The electrochemical behaviour of a family of monomeric copper(II) complexes of the related tetraanionic chelating ligands N,N[hair space]′-o-phenylenebis(oxamate) (L1) and its methylamide (L2) and bis(methylamide) (L3) has been investigated by cyclic voltammetry in acetonitrile at 25 °C and 0.1 mol dm-3 NEt4ClO4 as supporting electrolyte. The copper(III)–copper(II) reduction potentials have been found to span a potential range from +0.41 to -0.02 V (vs. saturated calomel electrode), being reversible for all cases except the copper(II)–L1 complex. The trend in formal potentials along this series is explained in terms of the stronger donor properties of the deprotonated-amido nitrogen atoms than those of the carboxylate oxygen ones. Hence, the stabilization of the trivalent oxidation state of copper is attributed to the increasing number of deprotonated-amido donor groups. A perfect correlation has been observed within this family between the CuIII–CuII potentials and the visible absorption maxima of the copper(II) complexes. The relative gain in crystal-field stabilization energy for the change from the d9 (CuII, square planar) to the low-spin d8 (CuIII, square-planar) electronic configuration is the main factor in the overall thermodynamic stability of the copper(III) complexes. The molecular structure of the stable copper(III) complex [PPh4][CuL3]·MeCN has been determined by single-crystal X-ray analysis. The metal is in a nearly square-planar environment formed by the four amido nitrogen atoms of the chelating ligand, with short Cu–N bond distances (1.84–1.88 Å) typical of trivalent copper.


References

  1. T. F. Collins, Acc. Chem. Res., 1994, 27, 279 CrossRef CAS and refs. therein.
  2. K. Nag and A. Chakravorty, Coord. Chem. Rev., 1980, 33, 87 CrossRef CAS.
  3. H. Sigel and R. B. Martin, Chem. Rev., 1982, 82, 385 CrossRef CAS.
  4. J. J. Bour, P. J. M. W. L. Birker and J. J. Steggerda, Inorg. Chem., 1971, 10, 1202 CrossRef.
  5. H. Ojima and K. Nonoyama, Coord. Chem. Rev., 1988, 92, 85 CrossRef CAS.
  6. R. Ruiz, Ph.D. Thesis, University of Valencia, 1995.
  7. (a) F. Lloret, M. Julve, J. Faus, Y. Journaux, M. Philoche-Levisalles and Y. Jeannin, Inorg. Chem., 1989, 28, 3702 CrossRef CAS; (b) F. Lloret, J. Sletten, R. Ruiz, M. Julve, J. Faus and M. Verdaguer, Inorg. Chem., 1992, 31, 779; (c) F. Lloret, M. Julve, J. Faus, R. Ruiz, I. Castro, M. Mollar and M. Philoche-Levisalles, Inorg. Chem., 1992, 31, 784 CrossRef CAS; (d) J. Soto, R. Martinez-Mañez, J. Paya, F. Lloret and M. Julve, Transition Met. Chem., 1993, 18, 69 CrossRef CAS; (e) F. Lloret, M. Julve, J. A. Real, J. Faus, R. Ruiz, M. Mollar, I. Castro and C. Bois, Inorg. Chem., 1992, 31, 2956 CrossRef CAS; (f) J. A. Real, M. Mollar, R. Ruiz, J. Faus, F. Lloret, M. Julve and M. Philoche-Levisalles, J. Chem. Soc., Dalton Trans., 1993, 1483 RSC; (g) J. A. Real, R. Ruiz, J. Faus, F. Lloret, M. Julve, Y. Journaux, M. Philoche-Levisalles and C. Bois, J. Chem. Soc., Dalton Trans., 1994, 3769 RSC; (h) J. L. Sanz, B. Cervera, R. Ruiz, C. Bois, J. Faus, F. Lloret and M. Julve, J. Chem. Soc., Dalton Trans., 1996, 1359 RSC.
  8. P. J. M. W. L. Birker, J. Chem. Soc., Chem. Commun., 1977, 444 RSC.
  9. L. L. Diaddario, W. R. Robinson and D. W. Margerum, Inorg. Chem., 1983, 22, 1021 CrossRef CAS.
  10. F. C. Anson, T. J. Collins, T. G. Richmond, B. D. Santarsiero, J. E. Toth and B. G. R. T. Treco, J. Am. Chem. Soc., 1987, 109, 2974 CrossRef CAS.
  11. W. E. Keys, J. B. R. Dunn and T. M. J. Loehr, J. Am. Chem. Soc., 1977, 99, 4527 CrossRef.
  12. B. R. Serr, C. E. L. Headford, C. M. Elliot and O. P. Anderson, Acta Crystallogr., Sect. C, 1990, 46, 500 CrossRef.
  13. M. R. Caira, K. R. Koch and C. Sacht, Acta Crystallogr., Sect. C, 1991, 47, 26 CrossRef.
  14. T. M. Yao, X. Z. You, C. Li, L. F. Li and Q. C. Yang, Acta Crystallogr., Sect. C, 1994, 50, 67 CrossRef.
  15. H. O. Stumpf, Y. Pei, O. Kahn, J. Sletten and J. P. Renard, J. Am. Chem. Soc., 1993, 115, 6738 CrossRef CAS.
  16. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, p. 99 Search PubMed.
  17. G. M. Sheldrick, SHELXS 86, A Program for Crystal Structure Determination, University of Göttingen, 1986.
  18. G. M. Sheldrick, SHELX 76, A Computer Program for Crystal Structure Determination, University of Cambridge, 1976.
  19. C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1971.
  20. A. C. Fabretti, A. Giusti, V. G. Albano, C. Castellani, D. Gatteschi and R. Sessoli, J. Chem. Soc., Dalton Trans., 1991, 2133 RSC.
  21. Z. N. Chen, W. X. Tang, J. Chen, P. J. Zheng, C. G. Chen and K. B. Yu, Polyhedron, 1994, 13, 873 CrossRef CAS.
  22. S. S. Turner, C. Michaut, O. Kahn, L. Ouahab, A. Lecas and E. Amouyal, New J. Chem., 1995, 19, 773 Search PubMed.
  23. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 4th edn., 1986, ch. 3, p. 244 Search PubMed.
  24. Y. Nishida and S. Kida, Coord. Chem. Rev., 1979, 27, 275 CrossRef CAS.
  25. F. P. Bossu, K. L. Chellapa and D. W. Margerum, J. Am. Chem. Soc., 1977, 99, 2195 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.