Ruthenium tris-(bipyridyl) complexes with pendant protonatable and deprotonatable moieties: pH sensitivity of electronic spectral and luminescence properties

(Note: The full text of this document is currently only available in the PDF Version )

Alexander M. W. Cargill Thompson, Michael C. C. Smailes, John C. Jeffery and Michael D. Ward


Abstract

The effect of pH on the electronic absorption spectra and luminescence behaviour of four complexes consisting of {Ru(bipy)3}2+ chromophores (bipy = 2,2′-bipyridine) bearing pendant pH-sensitive functional groups has been investigated by pH titrations. For [Ru(bipy)2L1]2+1 (L1 = 2,2′∶4′,4″-terpyridine) protonation of the pendant pyridyl group (pKa = 3.2) results in a red-shift of the lowest-energy metal-to-ligand charge-transfer (m.l.c.t.) band by 870 cm-1 due to the lowering of the π* level of L1 which occurs on protonation. For [Ru(bipy)2L2]2+2 [L2 = 4(4-pyridyl)-2,2′∶4′,4″-terpyridine] both pendant pyridyl sites protonate simultaneously (pKa = 3.6); the red-shift of the lowest-energy m.l.c.t. band is 1570 cm-1, approximately double that which occurred for 1. The pKa* values of 1 and 2 were estimated to be 5.0 and 5.2 respectively, indicating that their excited states are more basic than the ground state due to the presence of an additional electron on L1 or L2 as a reslt of the m.l.c.t. process. The luminescence of [Ru(bipy)2(HL3)]2+3 [HL3 = 4-(4-hydroxyphenyl)-2,2′ -bipridine] is completely quenched on deprotonation of the pendant phenol group, while that of isomeric [Ru(bipy)2(HL4)]2+4 [HL4 = 4-(3-hydroxyphenyl)-2,2′ -bipyridine] is only partially quenched, owing to the inability of the ligand π system of [L4]- to allow internal charge transfer of the phenolate negative charge to the metal centre across a meta-substituted linkage. The pKa values for 3 and 4 are 8.6 and 8.9 respectively, and their pKa* values are essentially the same as the pKa values because the m.l.c.t. excited states involve the ancillary bipy ligands rather than HL3 or HL4. The new compound HL4 was crystallographically characterised revealing that molecules of HL4 associate via OH · · · N hydrogen-bonding interactions to give a one-dimensional ribbon.


References

  1. V. Balzani, A. Credi and F. Scandola, in Transition Metals in Supramolecular Chemistry, eds. L. Fabbrizzi and A. Poggi, Kluwer, Dordrecht, 1994, p. 1 Search PubMed; T. J. Meyer, Acc. Chem. Res., 1989, 22, 163 Search PubMed; V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester, 1991 CrossRef CAS.
  2. J. G. Vos, Polyhedron, 1992, 11, 2285 CrossRef CAS.
  3. J.-C. Chambron and J.-P. Sauvage, Chem. Phys. Lett., 1991, 182, 603 CrossRef CAS; E. Amouyal, A. Homsi, J.-C. Chambron and J.-P. Sauvage, J. Chem. Soc., Dalton Trans., 1990, 1841 RSC; A. Friedman, J.-C. Chambron, J.-P. Sauvage, N. Turro and J. K. Barton, J. Am. Chem. Soc., 1990, 112, 4960 CrossRef CAS.
  4. S. C. Rawle, P. Moore and N. W. Alcock, J. Chem. Soc., Chem. Commun., 1992, 684 RSC.
  5. P. D. Beer, O. Kocian, R. J. Mortimer and C. Ridgway, J. Chem. Soc., Dalton Trans., 1993, 2629 RSC.
  6. R. Grigg, J. M. Holmes, S. K. Jones and W. D. J. A. Norbert, J. Chem. Soc., Chem. Commun., 1994, 185 RSC; R. Grigg and W. D. J. A. Norbert, J. Chem. Soc., Chem. Commun., 1992, 1300 RSC.
  7. P. J. Giordano, C. R. Bock and M. S. Wrighton, J. Am. Chem. Soc., 1978, 100, 6960 CrossRef CAS.
  8. F. Barigelleti, L. Flamigni, M. Guardigli, J.-P. Sauvage, J.-P. Collin and A. Sour, Chem. Commun., 1996, 1329 RSC.
  9. M. A. Hayes, C. Meckel, E. Schatz and M. D. Ward, J. Chem. Soc., Dalton Trans., 1992, 703 RSC.
  10. R. Dasgupta and U. R. Ghatak, Tetrahedron Lett., 1985, 26, 1581 CrossRef CAS.
  11. S. M. Treffert-Ziemlis, J. Golus, D. P. Strommen and J. R. Kincaid, Inorg. Chem., 1993, 32, 3890 CrossRef CAS; F. Kröhnke and K. F. Gross, Chem. Ber., 1959, 92, 22 CAS.
  12. B. P. Sullivan, D. J. Salmon and T. J. Meyer, Inorg. Chem., 1978, 17, 3334 CrossRef CAS.
  13. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
  14. F. Kröhnke, Synthesis, 1976, 1 CrossRef.
  15. M. Guardigli, L. Flamigni, F. Barigelletti, C. S. W. Richards and M. D. Ward, J. Phys. Chem., 1996, 100, 10 620 CrossRef CAS.
  16. E. C. Constable and A. M. W. Cargill Thompson, J. Chem. Soc., Dalton Trans., 1992, 2947 RSC.
  17. C. K. Ryu, R. Wang, R. H. Schmehl, S. Ferrere, M. Ludwikow, J. W. Merkert, C. E. L. Headford and C. M. Elliott, J. Am. Chem. Soc., 1992, 114, 430 CrossRef CAS; L. F. Cooley, C. E. L. Headford, C. M. Elliott and D. F. Kelley, J. Am. Chem. Soc., 1988, 110, 6673 CrossRef CAS; E. H. Yonemoto, R. L. Riley, Y. I. Kim, S. J. Atherton, R. H. Schmehl and T. E. Mallouk, J. Am. Chem. Soc., 1992, 114, 8081 CrossRef CAS.
  18. K. Shinozaki, Y. Kaizu, H. Hirai and H. Kobayashi, Inorg. Chem., 1989, 28, 3675 CrossRef CAS.
  19. A. Das, J. C. Jeffery, J. P. Maher, J. A. McCleverty, E. Schatz, M. D. Ward and G. Wollermann, Inorg. Chem., 1993, 32, 2145 CrossRef CAS.
  20. R. H. Fabian, D. M. Klassen and R. W. Sonntag, Inorg. Chem., 1980, 19, 1977 CrossRef CAS; J. M. Kelly, C. Long, C. M. O'Connell, J. G. Vos and A. H. A. Tinnemans, Inorg. Chem., 1983, 22, 2818 CrossRef CAS; E. C. Constable, M. J. Hannon, A. M. W. Cargill Thompson, D. A. Tocher and J. V. Walker, Supramol. Chem., 1993, 2, 243 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.