Temperature-programmed decomposition of [Mo(CO)6]: indication of surface reactions and cluster formation

(Note: The full text of this document is currently only available in the PDF Version )

How-Ghee Ang, Gaik-Khuan Chuah, Stephan Jaenicke and Wai-Leng Loh


Abstract

The influence of the extent of hydroxylation on the surface-mediated decarbonylation of [Mo(CO)6] has been studied using temperature-programmed decomposition (TPDE). Different CO-evolution spectra were obtained on silica and γ-alumina supports, which can be explained based on the density of the OH groups and the strength of Lewis-acid sites on the surface of the supports. The TPDE spectra changed dramatically with the extent of surface dehydroxylation. The desorption signal can be deconvoluted into individual signals which correspond to the stepwise elimination of one CO group after the other from the carbonyl complex. Intermediate subcarbonyl species are stable on hydroxylated surfaces, whereas evidence for the formation of multinuclear clusters has been obtained on dehydroxylated surfaces. Increasing dehydroxylation of the support lowered the temperature for the first elimination of CO, but the temperature for complete decarbonylation became higher. The reaction mechanism changed from nucleophilic ligand exchange on hydroxylated surfaces to Lewis-acid-assisted decarbonylation on severely dehydroxylated surfaces. Owing to its surface sensitivity, the decomposition of [Mo(CO)6] can be used as a probe for surface acid–base properties. Besides evolution of CO, variable amounts of H2 were also observed. Hydrogen is formed in a redox reaction between the metal and surface OH groups. The amount and temperature of hydrogen evolution depended on the chemical nature and the pretreatment of the support. Even on thoroughly dehydroxylated supports, thermal decomposition of [Mo(CO)6] did not lead to zerovalent metal, but to a slightly oxidized species.


References

  1. R. L. Burwell, jun. and A. Brenner, J. Mol. Catal., 1975/1976, 1, 77 Search PubMed.
  2. A. Brenner, J. Mol. Catal., 1979, 5, 157 CrossRef CAS.
  3. R. G. Bowman and R. L. Burwell, jun., J. Catal., 1984, 88, 388 CrossRef CAS.
  4. R. Nakamura, D. Pioch, R. G. Bowman and R. L. Burwell, jun., J. Catal., 1985, 93, 388 CrossRef CAS.
  5. R. Nakamura and R. L. Burwell, jun., J. Catal., 1985, 93, 399 CrossRef CAS.
  6. J. Smith, R. F. Howe and D. A. Whan, J. Catal., 1974, 34, 191 CrossRef CAS.
  7. R. L. Burwell, jun., J. Catal., 1984, 86, 301 CrossRef.
  8. A. Brenner and R. L. Burwell, jun., J. Catal., 1978, 52, 364 CAS.
  9. J. Philips and J. A. Dumestic, Appl. Catal., 1984, 9, 1 CrossRef.
  10. Y. Iwasawa, Tailored Metal Catalysts, D. Reidel, Dordrecht, 1986, p. 16 Search PubMed.
  11. A. Brenner and R. L. Burwell, jun., J. Catal., 1978, 52, 353 CAS.
  12. A. Brenner and R. L. Burwell, jun., J. Am. Chem. Soc., 1975, 97, 2565 CrossRef CAS.
  13. J. C. Mol, in Olefin Metathesis and Polymerization Catalysts, eds. Y. Imamoglu, B. Zumreoglu-Karan and A. J. Amass, Kluwer, London, 1990, p. 247 Search PubMed.
  14. R. F. Howe, Inorg. Chem., 1976, 15, 486 CrossRef CAS.
  15. A. Brenner and D. A. Hucul, Prepr., Div. Petrol. Chem., Am. Chem. Soc., 1977, 22, 1221 Search PubMed.
  16. J. L. Falconer and J. A. Schwarz, Catal. Rev., 1983, 25, 141 Search PubMed.
  17. A. M. de Jong and J. W. Niemantsverdriet, Surf. Sci., 1990, 233, 355 CrossRef CAS.
  18. P. A. Redhead, Vacuum, 1962, 12, 203 CrossRef CAS.
  19. H. G. Ang, K. S. Chan, G. K. Chuah, S. Jaenicke and S. K. Neo, J. Chem. Soc., Dalton Trans., 1995, 3753 RSC.
  20. G. D. Gatta, B. Fubini, G. Ghiotti and C. Morterra, J. Catal., 1976, 43, 90 CrossRef CAS.
  21. A. Zecchina, E. S. Platero and C. O. Arean, Inorg. Chem., 1988, 27, 102 CrossRef CAS.
  22. A. Brenner and D. A. Hucul, J. Catal., 1980, 61, 216 CrossRef CAS.
  23. A. Brenner, D. A. Hucul and S. J. Hardwick, Inorg. Chem., 1979, 18, 1478 CrossRef CAS.
  24. T. H. Ballinger and J. T. Yates, jun., Langmuir, 1991, 7, 3041 CrossRef CAS.
  25. K. P. Reddy and T. L. Brown, J. Am. Chem. Soc., 1995, 117, 2845 CrossRef CAS.
  26. T. H. Walter, A. Thompson, M. Keniry, S. Shinoda, T. L. Brown, H. S. Gutowsky and E. Oldfield, J. Am. Chem. Soc., 1988, 110, 1065 CrossRef CAS.
  27. B. E. Nieuwenhuys, Surf. Sci., 1983, 126, 307 CrossRef CAS.
  28. G. Broden, T. N. Rhodin, C. Brucker, R. Benbow and Z. Hurych, Surf. Sci., 1976, 59, 593 CrossRef CAS.
  29. R. G. Bowman and R. L. Burwell, jun., J. Catal., 1980, 63, 463 CrossRef CAS.
  30. J. S. Lee and M. Boudard, Jpn. J. Appl. Phys., 1993, 32, 472 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.