Structure and stability of complexes of macrocyclic ligands bearing 2-hydroxycyclohexyl groups. Structure of the copper(II) complex of 1-(2-hydroxycyclohexyl)-1,4,7,10-tetraazacyclododecane and the strontium(II) complex of 7,16-bis(2-hydroxycyclohexyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadec ane

(Note: The full text of this document is currently only available in the PDF Version )

Alvaro S. De Sousa, Robert D. Hancock and Joseph H. Reibenspies


Abstract

The compound 1-(2-hydroxycyclohexyl)-1,4,7,10-tetraazacyclododecane (L1) and its complex [CuL1][ClO4]21 have been prepared, as well as the complex [SrL2(H2O)][NO3]22 from the previously reported ligand L2 (L2 = D,L -7,16-bis(2-hydroxycyclohexyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctade cane). X-Ray studies of 1 and 2 gave for 1, triclinic, space group P[1 with combining macron], a = 8.632(1), b = 14.677(2), c = 17.797(4) Å, α = 86.80(2), β = 78.71(2), γ = 83.32(1)°, Z = 4, R = 0.0606, while 2 gave monoclinic, space group Cc, a = 16.809(6), b = 8.889(2), c = 21.232(6) Å, β = 101.47(2)°, Z = 4, R = 0.0314. The structure of 1 showed Cu–N and Cu–O bond lengths which were in the normal range. The structure shows some steric crowding of the co-ordinated ligand, with short H · · · H contacts between hydrogens on the cyclohexyl group and adjacent hydrogens on the macrocyclic ring. This acts to press the 2-hydroxycyclohexyl group towards the macrocyclic ring, and to have a compressive effect on the metal ion. The occurrence of 2 in space group Cc indicates spontaneous resolution of the complex into crystals with (R,R) or with (S,S) diastereomers of the ligand only. The SrII is nine-co-ordinate, with a water molecule occupying a co-ordination site. An extensive hydrogen-bonding network involving hydrogens from the co-ordinated water on SrII and nitrate oxygens, and hydrogens from the co-ordinated hydroxyls of the 2-hydroxycyclohexyl groups and nitrate oxygens, appears to be responsible for the spontaneous resolution. Ligands where ethylene bridges between donor atoms have been replaced by cyclohexanediyl bridges tend to show greater selectivity for smaller metal ions. This has been interpreted in terms of greater steric crowding on the outside of the ligand as the metal ion increases in size and decreases the curvature of the ligand. The structure of 2 shows six rather short H · · · H distances (2.05–2.2 Å) between hydrogens on the cyclohexyl group, and on the macrocyclic ring, which are much shorter than similar contacts in complex 1, supporting this suggestion. The protonation constants (log K) of L1 are 10.65, 9.51 and 4.03, while the formation constants (log K1) are 13.85 (ZnII), 14.58 (CdII) and 11.40 (PbII), all in 0.1 mol dm-3 NaNO3 at 25 °C. The effect of the 2-hydroxycyclohexenyl bridge on the stability of complexes is discussed.


References

  1. A. E. Martell and R. D. Hancock, Metal Complexes in Aqueous Solutions, Plenum, New York, 1996 Search PubMed.
  2. R. D. Hancock, Acc. Chem. Res., 1990, 23, 253 CrossRef CAS.
  3. D. J. Cram, Angew. Chem., Int. Ed. Engl., 1986, 25, 1039 CrossRef.
  4. G. Schwarzenbach, R. Gut and G. Anderegg, Helv. Chim. Acta, 1954, 37, 937 CrossRef CAS.
  5. R. M. Izatt, J. S. Bradshaw, S. A. Neilsen, J. D. Lamb, J. J. Christensen and D. Sen, Chem. Rev., 1985, 85, 271 CrossRef CAS.
  6. R. M. Izatt, K. Pawlik, J. S. Bradshaw and R. L. Bruening, Chem. Rev., 1991, 91, 6540.
  7. R. M. Izatt, K. Pawlik, J. S. Bradshaw and R. L. Bruening, Chem. Rev., 1995, 95, 2529 CrossRef CAS.
  8. A. E. Martell and R. M. Smith, Critical Stability Constants, Plenum, New York, 1974–1985, vols. 1–6 Search PubMed.
  9. W. Zhang, J. L. Loebach, S. R. Wilson and E. N. Jacobsen, J. Am. Chem. Soc., 1990, 112, 280.
  10. M. W. Brechbiel and O. A. Gansow, J. Chem. Soc., Perkin Trans. 1, 1992, 1173 RSC.
  11. A. S. De Sousa, G. J. B. Croft, C. A. Wagner, J. P. Michael and R. D. Hancock, Inorg. Chem., 1991, 30, 3525 CrossRef CAS.
  12. A. S. De Sousa and R. D. Hancock, J. Chem. Soc., Chem. Commun., 1995, 415 RSC.
  13. M. F. Tweedle, D. D. Dischino, E. J. Delaney, J. E. Emswiler, J. S. Prasad and S. K. Srivistava, Inorg. Chem., 1991, 30, 1265 CrossRef CAS.
  14. J. J. Yaouanc, N. Le Bris, G. Le Gall, J. C. Clement, H. Handel and H. Des Abbayes, J. Chem. Soc., Chem. Commun., 1991, 206 RSC.
  15. D. Parker, K. P. Pulukkoddy, T. J. Norman, L. Royle and C. J. Broan, J. Chem. Soc., Perkin Trans. 2, 1993, 605 RSC.
  16. J. J. Stewart, J. Comput. Chem., 1989, 19, 209 CrossRef and refs. therein.
  17. A. C. North, D. C. Philips and F. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 350 CrossRef.
  18. G. Sheldrick, SHELXS 86, Program for Crystal Structure Solution, University of Göttingen, 1986.
  19. (a) G. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993; (b) International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4 Search PubMed.
  20. L. J. Zompa, Inorg. Chem., 1978, 17, 2531 CrossRef CAS.
  21. P. M. May, K. Murray and D. R. Williams, Talanta, 1985, 32, 483 CrossRef CAS.
  22. CACHE, Cache Scientific, Beaverton, OR, 1993.
  23. B. P. Hay, J. R. Rustad and C. Hostetler, J. Am. Chem. Soc., 1993, 115, 11158 CrossRef CAS.
  24. C. Eaborn, P. B. Hitchcock, J. D. Smith and A. C. Sullivan, J. Organomet. Chem., 1984, C23, 263.
  25. I. Bernal and G. B. Kauffman, J. Chem. Educ., 1987, 64, 604 CAS; 1989, 66, 293; I. Bernal, J. Chem. Educ., 1992, 69, 468 Search PubMed; Inorg. Chim. Acta, 1985, 96, 99 CAS; 1985, 101, 175 CAS.
  26. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  27. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1984, p. 1413 Search PubMed.
  28. R. Luckay, J. H. Reibenspies and R. D. Hancock, J. Chem. Soc., Chem. Commun., 1995, 2365 RSC.
  29. N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.