Oxidative additions of dichloromethane and cyclo-octasulfur to rhodium(I) complexes containing (2-aminoethyl)-dimethylphosphine or -diphenylphosphine

(Note: The full text of this document is currently only available in the PDF Version )

Kazuo Kashiwabara, Akira Morikawa, Takayoshi Suzuki, Kiyoshi Isobe and Kazuyuki Tatsumi


Abstract

The oxidative-addition reactions of dichloromethane and cyclo-octasulfur with rhodium(I) complexes containing (2-aminoethyl)dimethylphosphine (edmp) or (2-aminoethyl)diphenylphosphine (edpp) have been examined. The reactions of [{RhCl(cod)}2] (cod = cycloocta-1,5-diene) with edmp and with edpp in dichloromethane yield cationic adducts trans(Cl,C)cis(P,P ′)-[RhCl(CH2Cl)(edmp)2]+1 and trans(Cl,C)cis(P,P ′)-[RhCl(CH2Cl)(edpp)2]+2, respectively. X-Ray analyses of these complexes revealed that the Rh–Cl bond lengths are considerably elongated compared with those of the corresponding dichloro complexes trans(Cl,Cl′)cis(P, P′)-[RhCl2(edmp)2]+ and trans(Cl,Cl′)cis(P, P′)-[RhCl2(edpp)2]+ due to the strong trans influence of the chloromethyl donor group. The Rh–C bonds in complexes 1, 2 and trans-[RhCl(CH2Cl)(dmpe)2]+ are 2.050(7) < 2.078(7) < 2.162(2) Å, respectively. This order reflects the differences in the steric bulk around rhodium(III) centre as well as the strength of the trans influence toward the trans-positioned Rh–Cl bond. Complex 2 reacted further with S8 to give a mixture of trans(P,N)-[Rh(S4)(edpp)2 ]+3a and trans(P,N)-[Rh(S5)(edpp)2 ]+3b, however such a reaction does not occur for 1. On the other hand, direct addition of S8 to [Rh(edmp)2]+ in methanol resulted in the formation of trans(N,N′)-[Rh(S4)(edmp) 2]+4a and a small amount of the S5 complex 4b. The analogous reaction with [Rh(edpp)2]+ gave a mixture of 3a and 3b. X-Ray analyses revealed that 3a and 3b are cocrystallized in the ratio of 1∶1. The preparation of trans(N,N[hair space]′)-[Rh(O2 )(edmp)2]+5 is also described.


References

  1. F. H. Jardine and P. S. Sheridan, Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 4, ch. 48. 6. 3 Search PubMed.
  2. For example, M. Kita, K. Kashiwabara, J. Fujita, H. Tanaka and S. Ohba, Bull. Chem. Soc. Jpn., 1994, 67, 2457 Search PubMed and refs. therein.
  3. T. B. Marder, W. C. Fultz, J. C. Calabrese, R. L. Harlow and D. Milstein, J. Chem. Soc., Chem. Commun., 1987, 1543 RSC.
  4. P. J. Fennis, P. H. M. Budzelaar, J. H. G. Frijns and A. G. Orpen, J. Organomet. Chem., 1990, 393, 287 CrossRef CAS.
  5. G. E. Ball, W. R. Cullen, M. D. Fryzuk, B. R. James and S. J. Rettig, Organometallics, 1991, 10, 3767 CrossRef CAS.
  6. H. Nishiyama, M. Horihata, T. Hirai, S. Wakamatsu and K. Itoh, Organometallics, 1991, 10, 2706 CrossRef CAS.
  7. M. A. Ciriano, M. A. Tena and L. A. Oro, J. Chem. Soc., Dalton Trans., 1992, 2123 RSC.
  8. T. Yoshida, T. Ueda, T. Adachi, K. Yamamoto and T. Higuchi, J. Chem. Soc., Chem. Commun., 1985, 1137 RSC.
  9. E. G. Burns, S. S. C. Chu, P. de Meester and M. Lattman, Organometallics, 1986, 5, 2383 CrossRef CAS.
  10. A. P. Ginsberg, W. E. Lindsell, C. R. Sprinkle, K. W. West and R. L. Cohen, Inorg. Chem., 1982, 21, 3666 CrossRef CAS.
  11. T. E. Nappier, jun., D. W. Meek, R. M. Kirchner and J. A. Ibers, J. Am. Chem. Soc., 1973, 95, 4194 CrossRef.
  12. J. T. Mague and E. J. Davis, Inorg. Chem., 1977, 16, 131 CrossRef CAS.
  13. Y. Wakatsuki, H. Yamazaki and C. Cheng, J. Organomet. Chem., 1989, 372, 437 CrossRef CAS.
  14. T. B. Rauchfuss and D. M. Roundhill, J. Am. Chem. Soc., 1974, 96, 3098 CrossRef CAS.
  15. C. A. Ghilardi, S. Midollini, S. Moneti, A. Orlandini and G. Scapacci, J. Chem. Soc., Dalton Trans., 1992, 3371 RSC.
  16. T. Suzuki, M. Rude, K. P. Simonsen, M. Morooka, S. Ohba, F. Galsbøl and J. Fujita, Bull. Chem. Soc. Jpn., 1994, 67, 1013 CAS.
  17. K. Kashiwabara, I. Kinoshita, T. Ito and J. Fujita, Bull. Chem. Soc. Jpn., 1981, 54, 725 CAS.
  18. G. Giordano and R. H. Crabtree, Inorg. Synth., 1979, 19, 218.
  19. T. G. Shenck, J. M. Downs, C. R. C. Milne, P. B. Mackenzie, H. Boucher, J. Whealan and B. Bosnich, Inorg. Chem., 1985, 24, 2334 CrossRef CAS.
  20. W. L. Busing and H. A. Levy, Acta Crystallogr., 1957, 10, 180 CrossRef CAS.
  21. K. Watenpaugh and J. Stewart, ABSCAL, Program for Scale Diffractometer Intensity Data in XTAL 3.2 Program Package, The Upjohn Company, Michegan, 1992.
  22. D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4 Search PubMed.
  23. S. R. Hall, H. D. Flanck and J. M. Stewart, XTAL 3.2, Program Package for Crystal Structure Determination, Universities of Western Australia, Geneva and Maryland, 1992.
  24. K. P. Simonsen, N. Suzuki, M. Hamada, M. Kojima, S. Ohba, Y. Saito and J. Fujita, Bull. Chem. Soc. Jpn., 1989, 62, 3790 CAS.
  25. F. Galsbøl, M. Kojima, T. Ishii, S. Ohba, Y. Saito and J. Fujita, Bull. Chem. Soc. Jpn., 1986, 59, 1701 CAS.
  26. T. Suzuki, K. Isobe and K. Kashiwabara, J. Chem. Soc., Dalton Trans., 1995, 3609 RSC.
  27. P. S. Pregosin and R. W. Kunz, 31P and 13C NMR of Transition Metal Phosphine Complexes, Springer, Berlin, Heidelberg, 1979 Search PubMed.
  28. D. A. Redfield, J. H. Nelson and L. W. Cary, Inorg. Nucl. Chem. Lett., 1974, 10, 727 Search PubMed.
  29. D. N. Lawson, J. A. Osborn and G. Wilkinson, J. Chem. Soc. A, 1966, 1733 RSC.
  30. M. Draganjac and T. B. Rauchfuss, Angew. Chem., Int. Ed. Engl., 1985, 24, 742 CrossRef.
  31. M. C. Baird, D. N. Lawson, J. T. Mague, J. A. Osborn and G. Wilkinson, Chem. Commun., 1966, 129 RSC.
  32. M. J. Bennett and P. B. Donaldson, Inorg. Chem., 1977, 16, 1581 CrossRef CAS.
  33. L. M. Haines and E. Singleton, J. Organomet. Chem., 1971, 30, C81 CrossRef CAS.
  34. M. J. Nolte and E. Singleton, Acta Crystallogr., Sect. B, 1976, 32, 1410 CrossRef.
  35. J. A. McGinnety, N. C. Payne and J. A. Ibers, J. Am. Chem. Soc., 1969, 91, 6301 CrossRef CAS.
  36. M. Bressan, F. Morandini and P. Rigo, Inorg. Chim. Acta, 1983, 77, L139 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.