Syntheses, crystal structures, and electrochemical and spectroscopic properties of ruthenium complexes of the N,S-bidentate ligand 2-(2-pyridyl)benzenethiol

(Note: The full text of this document is currently only available in the PDF Version )

Alexander M. W. Cargill Thompson, David A. Bardwell, John C. Jeffery, Leigh H. Rees and Michael D. Ward


Abstract

Conversion of the amino group of 2-(2-aminophenyl)pyridine into a thiol to give the N,S-donor chelating ligand 2-(2-pyridyl)benzenethiol (HL) afforded the oxidised disulfide L–L which was crystallographically characterised. It shows an interesting example of an intermolecular N · · · S–S interaction (N · · · S distances are 2.778 and 2.724 Å; N · · · S–S angles are both ca. 11°) in which the pyridyl lone pair interacts weakly with the σ[hair space]* orbital of the S–S bond. Reaction of L–L with [Ru(bipy)2Cl2]·2H2O (bipy = 2,2′-bipyridine) and RuCl3·xH2O afforded [RuII(bipy)2L][PF6] 1 and [RuIIIL3] 2 respectively (following in situ reduction of the disulfide) which have N5S and mer-N3S3 donor sets respectively (N of pyridyl, S of benzenethiolate). Both were crystallographically characterised and have the expected pseudo-octahedral geometries. An interesting feature of both structures is that the relatively large Ru–S distances (compared to the Ru–N) prevent the pyridyl rings from approaching the metal centre as closely as they would if they were not constrained, so the Ru–N distances are longer than usual. Electrochemical studies show that the benzenethiolate ligands are more effective electron donors to ruthenium (both +2 and +3) than are phenolates: for example, the RuII–RuIII couple of 1 is at -0.07 V vs. ferrocene–ferrocenium, whereas the same couple of the related N5O-co-ordinated complex (O from phenolate) was at +0.03 V. Similarly the RuIII–RuIV couple of 2 was at -0.21 V, compared to +0.14 V for the N3O3-co-ordinated analogue. Complex 2 also shows a reversible ligand-based oxidation which is absent for 1, arising from stabilisation of the sulfur-based radical cation by interaction with the lone pair on an adjacent sulfur atom in the co-ordination sphere of the complex, which cannot happen for 1. Electronic spectral properties show that the sulfur donor of 1 weakens the ligand field with respect to [Ru(bipy)3]2+, and that 2 has an intense sulfur-to-RuIII ligand-to-metal charge-transfer band.


References

  1. A. M. W. Cargill Thompson, J. C. Jeffery, D. J. Liard and M. D. Ward, J. Chem. Soc., Dalton Trans., 1996, 879 RSC; D. A. Bardwell, J. C. Jeffery and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 3071 RSC; D. A. Bardwell, A. M. W. Cargill Thompson, J. C. Jeffery, E. E. M. Tilley and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 835 RSC; D. A. Bardwell, J. C. Jeffery, E. Schatz, E. E. M. Tilley and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 825 RSC; J. C. Jeffery, J. P. Maher, C. A. Otter, P. Thornton and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 819 RSC.
  2. W. Kaim and B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Wiley, Chichester, 1994, and refs. therein Search PubMed.
  3. D. Sellmann, G. Mahr and F. Knoch, Inorg. Chim. Acta, 1994, 224, 35 CrossRef CAS; S. Brooker and P. D. Croucher, J. Chem. Soc., Chem. Commun., 1995, 1493 RSC; U. Brand and H. Vahrenkamp, Chem. Ber., 1995, 128, 787 CAS; J. E. Barclay, D. J. Evans, G. Garcia, M. D. Santana, M. C. Torralba and J. M. Yago, J. Chem. Soc., Dalton Trans., 1995, 1965 RSC; R. Hahn, A. Nakamura, K. Tanaka and Y. Nakayama, Inorg. Chem., 1995, 34, 6562 CrossRef CAS.
  4. S. P. Satsangee, J. H. Hain, jun., P. T. Cooper and S. A. Koch, Inorg. Chem., 1992, 31, 5160 CrossRef CAS; D. Sellmann, O. Käppler and F. Knoch, J. Organomet. Chem., 1989, 367, 161 CrossRef CAS; D. Sellmann, P. Lechner, F. Knoch and M. Moll, J. Am. Chem. Soc., 1992, 114, 922 CrossRef CAS; L. D. Field, T. W. Hambley and B. C. K. Yau, Inorg. Chem., 1994, 33, 2009 CrossRef CAS; P. G. Jessop, S. J. Rettig, C.-L. Lee and B. R. James, Inorg. Chem., 1991, 30, 4617 CrossRef CAS; S.-L. Soong, J. H. Hain, jun., M. Millar and S. A. Koch, Organometallics, 1988, 7, 556 CrossRef CAS.
  5. M. A. Greaney, C. L. Coyle, M. A. Harmer, A. Jordan and E. I. Steifel, Inorg. Chem., 1989, 28, 912 CrossRef CAS.
  6. B. M. Holligan, J. C. Jeffery, M. K. Norgett, E. Schatz and M. D. Ward, J. Chem. Soc., Dalton Trans., 1992, 3345 RSC.
  7. D. A. Bardwell, D. Black, J. C. Jeffery, E. Schatz and M. D. Ward, J. Chem. Soc., Dalton Trans., 1993, 2321 RSC.
  8. C. M. Duff and G. A. Heath, Inorg. Chem., 1991, 30, 2528 CrossRef CAS.
  9. A. Juris, V. Balzani, F. Barigeletti, S. Campagna, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85 CrossRef CAS.
  10. J. W. Haworth, I. M. Heilbron and D. H. Hey, J. Chem. Soc., 1940, 339 RSC.
  11. B. P. Sullivan, D. J. Salmon and T. J. Meyer, Inorg. Chem., 1978, 17, 3334 CrossRef CAS.
  12. D. McKinnon, K. A. Duncan, A. M. McKinnon and P. A. Spevack, Can. J. Chem., 1985, 63, 882 CAS.
  13. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
  14. A. M. W. Cargill Thompson, S. R. Batten, J. C. Jeffery, L. H. Rees and M. D. Ward, Aust. J. Chem., in the press Search PubMed.
  15. K. S. Finney and G. W. Everett, Inorg. Chim. Acta, 1974, 11, 185 CrossRef CAS.
  16. R. E. Rosenfeld, jun., R. Parthasarathy and J. D. Dunitz, J. Am. Chem. Soc., 1977, 99, 4860 CrossRef.
  17. F. T. Burling and B. M. Goldstein, J. Am. Chem. Soc., 1992, 114, 2313 CrossRef CAS.
  18. F. T. Burling and B. M. Goldstein, Acta Crystallogr., Sect. B, 1993, 49, 738 CrossRef; G. R. Desiraju and V. Nalini, J. Mater. Chem., 1991, 1, 201 RSC; D. Britton and J. D. Dunitz, Helv. Chim. Acta, 1980, 63, 1068 CrossRef CAS; M. Iwaoka and S. Tomoda, J. Am. Chem. Soc., 1996, 118, 8077 CrossRef CAS.
  19. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1 RSC.
  20. D. P. Rillema, D. S. Jones and H. A. Levy, J. Chem. Soc., Chem. Commun., 1979, 849 RSC.
  21. D. W. Phelps, E. M. Kahn and D. J. Hodgson, Inorg. Chem., 1975, 14, 2486 CrossRef CAS.
  22. K.-D. Asmus, Acc. Chem. Res., 1979, 12, 436 CrossRef CAS.
  23. T. Clark, J. Am. Chem. Soc., 1988, 110, 1672 CrossRef CAS.
  24. P. M. W. Gill and L. Radom, J. Am. Chem. Soc., 1988, 110, 4931 CrossRef CAS.
  25. M. Bonifacic and K.-D. Asmus, J. Org. Chem., 1986, 51, 1216 CrossRef CAS; M. Bonifacic, J. Weiss, S. A. Chaudri and K.-D. Asmus, J. Phys. Chem., 1985, 89, 3910 CrossRef CAS; M. Göbl, M. Bonifacic and K.-D. Asmus, J. Am. Chem. Soc., 1984, 106, 5984 CrossRef.
  26. G. M. Bryant and J. E. Ferguson, Aust. J. Chem., 1971, 24, 275 CAS; R. J. P. Williams, J. Am. Chem. Soc., 1953, 75, 2163 CrossRef.
  27. G. K. Lahiri, S. Bhattacharya, B. K. Ghosh and A. Chakravorty, Inorg. Chem., 1987, 26, 4324 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.