The first crystal structure of a rhodium complex with the antileukaemic drug purine-6-thione; synthesis and molecular orbital investigation of new organorhodium(III) compounds[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Alessandro Cavaglioni and Renzo Cini


Abstract

Reactions of [RhIIICl2Ph(SbPh3)3] 1 with an excess of purine-6-thione (C5H4N4S) or 1,3-thiazole (C3H3NS) in absolute ethanol gave crystalline [RhIIICl2Ph(C5H4N4 S)(SbPh3)] 2 (S trans to Sb), [RhIIICl2Ph(SbPh3)(C3H 3NS)2] 3 and [RhIIICl2Ph(SbPh3)2(C 3H3NS)] 4. The crystal structure of complex 2 has been determined. Two different rotamers, which differ in the orientation of the phenyl ligand around the Rh–C bond axis, are present. The co-ordination geometry of both molecules is pseudo-octahedral and the neutral, N1 and N9 protonated, purine ligand behaves as bidentate through S and N7. The Rh–N7 bonding interaction is much weakened [average 2.262(7) Å] by the high trans influence of the phenyl ligand. The H8 atom of both purine systems points towards the centre of a phenyl ring of SbPh3. The geometrical parameters of the SbPh3 molecules show that an attractive interaction between H8 and the phenyl ring is operative for each rotamer. The 1H NMR spectrum of 2, in DCON(CD3)2, shows an upfield shift of 1.37 ppm for H8, consistent with a shielding effect from a phenyl ring of SbPh3. Therefore, the H8 · · · Ph(Sb) attractive interaction exists also in solution. The crystal structure of 3 has also been determined. The co-ordination geometry is pseudo-octahedral, the metal being linked to two trans chloride ions, one antimony donor from SbPh3, one carbon atom from the phenyl ligand and two nitrogen atoms from thiazole ligands, one of which is trans to Ph [Rh–N 2.245(5) Å]. The 1H NMR spectrum shows that the solid-state structure is maintained in CDCl3 solution. The signals of the H2 and H5 protons of the thiazole ligands are shifted downfield by 0.65 and 0.63 and 0.45 and 0.45 ppm for the molecules trans and cis to the C donor, respectively, upon complexation. The 1H HMR spectrum of 4 is in agreement with the presence of a thiazole ligand trans to Ph. An interaction between the chloride ligands and some protons of the phenyl rings of SbPh3 is resposible for a downfield chemical shift of about 0.2 ppm for the relevant 1H NMR signals in compounds 14. Molecular mechanics analysis based on the crystal structures of 2 and 3 made it possible to set up force-field parameters suitable for this class of molecules. In the case of 3 the rotation of the SbPh3 molecule around the Rh–Sb bond is highly hindered; the lowest barrier between minima is higher than 125 kJ mol-1. The rotations of the thiazole ligands have minima consistent with the crystal structure.


References

  1. H. A. O. Hill and J. F. Riordan, J. Inorg. Biochem., 1995, 59, 183; H. Sigel(Editor), Metal Ions in Biological Systems, Marcel Dekker, Basel, 1986, vol. 19; 1983, vol. 16 Search PubMed; G. V. Long, M. M. Harding, P. Turner and T. W. Hambley, J. Chem. Soc., Dalton Trans., 1995, 3905 Search PubMed.
  2. See, for example, (a) M. Gielen, Metal Based Drugs, 1994, 1 Search PubMed; 1995, 2 and refs. Therein; (b) J. Reedijk, Chem. Commun., 1996, 801 RSC; (c) P. M. van Vliet, Ph.D. Thesis, University of Leiden, 1996.
  3. J. R. J. Sorenson, Prog. Med. Chem., 1989, 26, 437 Search PubMed; S. Kirschener, Y. K. Wei, D. Francis and J. G. Bergman, J. Med. Chem., 1969, 9, 369.
  4. S. L. Bruhn, J. H. Toney and S. J. Lippard, Progress in Inorganic Chemistry, Bioinorganic Chemistry, ed. S. J. Lippard, Wiley, New York, 1990, vol. 38, p. 477 Search PubMed.
  5. L. M. Torres and L. G. Marzilli, J. Am. Chem. Soc., 1984, 106, 3691 CrossRef.
  6. K. Aoki, M. Hoshino, T. Okada, H. Yamazaki and H. Sekizawa, J. Chem. Soc., Chem. Commun., 1986, 314 RSC.
  7. K. Aoki and H. Yamazaki, J. Am. Chem. Soc., 1984, 106, 3691 CrossRef.
  8. D. P. Smith, E. Kohen, M. F. Maestre and R. H. Fish, Inorg. Chem., 1993, 32, 4119 CrossRef CAS.
  9. L. Y. Kuo, M. G. Kanatzidis, M. Sabat, A. L. Tipton and T. J. Marks, J. Am. Chem. Soc., 1991, 113, 9027 CrossRef CAS.
  10. A. D. Ryalov, D. L. Menglet and M. D. Levi, J. Organomet. Chem., 1991, 421, C16 CrossRef.
  11. M. J. Cleare, in Recent Results in Cancer Research, eds. T. A. Connors and J. J. Roberts, Springer, New York, 1974, vol. 48 Search PubMed; R. A. Howard, E. Sherwood, A. Erck, A. P. Kimball and J. L. Bear, J. Med. Chem., 1977, 20, 943 Search PubMed; T. Giraldi, G. Sava, G. Bertoli, G. Mestroni and G. Zassinovich, Cancer Res., 1977, 37, 2662 CrossRef CAS.
  12. Comprehensive Medicinal Chemistry, eds. C. Hansch, P. G. Sammes, J. B. Taylor, J. C. Emmett, P. D. Kennewell and C. A. Ramsden, Pergamon, Oxford, 1990 Search PubMed.
  13. S. Kumar, M. Jaseja, J. Zimmermann, B. Yadagiri, R. T. Pon, A.-M. Sapse and J. W. Lown, J. Biomol. Struct. Dynam., 1990, 8, 99 Search PubMed.
  14. C. Bianchini, Comments Inorg. Chem., 1988, 8, 27 CAS.
  15. R. T. Baker, D. W. Ovenall and R. Marlow, Organometallics, 1990, 9, 3028 CrossRef CAS.
  16. E. B. Tjaden and J. M. Stryker, J. Am. Chem. Soc., 1990, 112, 6420 CrossRef CAS.
  17. C. S. Chin, S. Y. Shin and C. Lee, J. Chem. Soc., Dalton Trans., 1992, 1323 RSC.
  18. R. S. Hay-Motherwell, S. V. Koschmieder, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1991, 2821 RSC.
  19. R. Cini, G. Giorgi and L. Pasquini, Inorg. Chim. Acta, 1992, 196, 7 CrossRef CAS.
  20. G. M. Sheldrick, SHELXL 93, Program for Renement of Crystal Structures, University of Göttingen, 1993.
  21. G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, 1986.
  22. M. Nardelli, PARST 95, A System of Computer Routines for Calculating Molecular Parameters from Results of Crystal Structure Analysis, University of Parma, 1995.
  23. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4 Search PubMed.
  24. G. Calzaferri and M. Brändle, ICONC&INPUTC, University of Berne, 1992.
  25. W. C. Still, F. Mohammadi, N. G. J. Richards, W. C. Guida, M. Lipton, G. Chang, T. Hendrickson, F. DeGunst and W. Hasel, MACROMODEL, version 3.0, Department of Chemistry, Columbia University, New York, 1990.
  26. S. J. Weiner, P. A. Kollman, D. T. Nguyen and D. A. Case, J. Comput. Chem., 1986, 7, 230 CrossRef CAS; S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, G. Alagona, S. Profeta, jun. and P. Weiner, J. Am. Chem. Soc., 1984, 106, 765 CrossRef CAS.
  27. R. Cini, R. Pogni, R. Basosi, A. Donati, C. Rossi, L. Sabadini, L. Rollo, S. Lorenzini, R. Gelli and R. Marcolongo, Metal Based Drugs, 1995, 2, 43 Search PubMed.
  28. R. Cini, G. Giorgi and E. Periccioli, Acta Crystallogr., Sect. C, 1991, 47, 716 CrossRef.
  29. R. Ma, Y.-J. Li, J. A. Muir and M. M. Muir, Acta Crystallogr., Sect. C, 1993, 49, 89 CrossRef.
  30. K. R. Acharya, S. S. Tavale and T. N. Guru Row, Acta Crystallogr., Sect. C, 1984, 40, 1327 CrossRef.
  31. F. A. Cotton, K. R. Dunbar, C. T. Eagle, L. R. Falvello, S.-J. Kang, A. C. Price and M. C. Verbruggen, Inorg. Chim. Acta, 1991, 184, 35 CrossRef CAS.
  32. C. Frei, A. Zilian, A. Raselli, H. U. Güdel and H.-B. Bürgi, Inorg. Chem., 1992, 31, 4766 CrossRef CAS.
  33. U. Maeder, A. von Zelewsky and H. Stoeckli-Evans, Helv. Chim. Acta, 1992, 75, 1320 CrossRef.
  34. R. Cini, A. Cinquantini, M. Sabat and L. G. Marzilli, Inorg. Chem., 1985, 24, 3903 CrossRef CAS.
  35. R. Cini, R. Bozzi, A. Karaulov, M. B. Hursthouse, A. Calafat and L. G. Marzilli, J. Chem. Soc., Chem. Commun., 1993, 899 RSC.
  36. A. Zilian, U. Maeder, A. von Zelewsky and H. U. Güdel, J. Am. Chem. Soc., 1989, 111, 3855 CrossRef CAS.
  37. M. M. Muir, G. M. Gomez, J. A. Muir and S. Sanchez, Acta Crystallogr., Sect. C, 1987, 43, 839 CrossRef.
  38. H. I. Heitner and S. J. Lippard, Inorg. Chem., 1974, 13, 815 CrossRef CAS.
  39. P. Lavertue, J. Hubert and A. L. Beauchamp, Inorg. Chem., 1976, 15, 322 CrossRef CAS.
  40. C. Singh, Acta Crystallogr., 1965, 19, 861 CrossRef CAS.
  41. (a) K. Yamanari, M. Kida, M. Yamamoto, T. Fujihara, A. Fuyuhiro and S. Kaizaki, J. Chem. Soc., Dalton Trans., 1996, 305 RSC; (b) E. Dubler and E. Gyr, Inorg. Chem., 1988, 27, 1466 CrossRef CAS.
  42. F. H. Allen, O. Kennard, D. G. Watson, L. Branner and A. G. Orpen, J. Chem. Soc., Perkin Trans. 2, 1987, S1 RSC.
  43. W. Saenger, Principles of Nucleic Acid Structure, Springer, Heidelberg, 1984, p. 80 Search PubMed.
  44. N. R. Champness, W. Levason and M. Webster, Inorg. Chim. Acta, 1993, 208, 189 CrossRef CAS.
  45. G. J. Lamprecht, J. G. Leipoldt and C. P. van Biljon, Inorg. Chim. Acta, 1984, 88, 55 CrossRef CAS.
  46. C. C. Hinckley, M. Matusz and P. D. Robinson, Acta Crystallogr., Sect. C, 1988, 44, 1829 CrossRef.
  47. P. G. Jones, Acta Crystallogr., Sect. C, 1992, 48, 1487 CrossRef.
  48. (a) E. Ceci, R. Cini, J. Konopa, L. Maresca and G. Natile, Inorg. Chem., 1996, 35, 876 CrossRef CAS; (b) P. K. Byers, A. J. Canty, R. T. Honeyman, B. W. Skelton and A. H. White, J. Organomet. Chem., 1992, 433, 233 CrossRef.
  49. G. Schröder, B. Lippert, M. Sabat, C. J. L. Lock, R. Faggiani, B. Song and H. Sigel, J. Chem. Soc., Dalton Trans., 1995, 3767 RSC.
  50. L. Brammer, J. M. Chernock, P. L. Goggin, R. J. Goodfellow and A. J. Orpen, J. Chem. Soc., Dalton Trans., 1991, 1789 RSC.
  51. C. E. Johnson, jun. and F. A. Bovey, J. Chem. Phys., 1958, 29, 1012 CrossRef CAS.
  52. (a) N. Katsaros and A. Grigoratou, J. Inorg. Biochem., 1985, 25, 131 CrossRef CAS; (b) N. Kottmair and W. Beck, Inorg. Chim. Acta, 1979, 34, 137 CrossRef CAS; (c) L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 1975, vol. 1 Search PubMed; (d) M. M. Muir, M. E. Cadiz and A. Balz, Inorg. Chim. Acta, 1988, 151, 209 CrossRef CAS; (e) K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1978 Search PubMed.
  53. (a) L. E. Orgel, J. Chem. Phys., 1955, 23, 1819 CAS; (b) J. S. Griffith, J. Inorg. Nucl. Chem., 1956, 2, 1, 229.
  54. C. K. Jørgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon, New York, 1962 Search PubMed.
  55. L. G. Marzilli, personal communication.
Click here to see how this site uses Cookies. View our privacy policy here.