Structure and bonding of Group 13 monocarbonyls

(Note: The full text of this document is currently only available in the PDF Version )

Adam J. Bridgeman


Abstract

The geometries and vibrational frequencies of the lowest-lying spin-doublet and spin-quartet states of the monocarbonyl and isocarbonyl complexes of the elements of Group 13 have been studied using local density-functional calculations within the linear combination of Gaussian-type orbitals framework. An analogy is drawn between the familiar σ donation/π-back donation mechanism used to describe the bonding in transition-metal carbonyls and the bonding in these main-group molecules. Changes in orbital populations and bond orders upon complexation have been used to quantify this idea. The results strongly suggest that the species detected by the observation of characteristic metal–carbonyl stretching frequencies in matrices containing boron, aluminium and gallium together with carbon monoxide are the carbonyl complexes rather than the isocarbonyl isomers. The ground state of BCO is predicted to be a 4Σ+ state but the ground states of the remaining monocarbonyls are likely to be spin doublets. The 2Π state of BCO and AlCO may be unstable to bending probably because of the repulsive interaction between the metal s2 electrons and the donor electron pair on the ligand. This repulsion is much reduced in the 4Σ+ state and together with increased π-back donation this results in considerably stronger M–CO bonds. The σ-acid and π-base behaviour of the metals parallels their electronegativity.


References

  1. M. S. Dewar, Bull Soc. Chim. Fr., 1951, 18, C71.
  2. J. Chatt and L. A. Duncanson, J. Chem. Soc., 1953, 2939 RSC.
  3. Y. M. Hamrick, R. J. Vanzee, J. T. Godbout, W. Weltner, W. J. Lauderdale, J. F. Stanton and R. J. Bartlett, J. Phys. Chem., 1991, 95, 2840 CrossRef CAS.
  4. T. R. Burkholder and L. Andrews, J. Phys. Chem., 1992, 96, 10 195 CrossRef CAS.
  5. V. Balaji, K. K. Sunil and K. D. Jordan, Chem. Phys. Lett., 1987, 136, 309 CrossRef CAS.
  6. P. Pullumbi and Y. Bouteiller, Chem. Phys. Lett., 1995, 234, 107 CrossRef CAS.
  7. A. Feltrin, M. Guido and S. N. Cesaro, Vib. Spectrosc., 1995, 8, 175 CrossRef CAS.
  8. P. S. Bagus, C. J. Nelin and C. W. Bauschlicher, jun., Phys. Rev. B, 1983, 28, 5423 CrossRef CAS.
  9. A. B. Rives and R. F. Fenske, J. Chem. Phys., 1981, 75, 1293 CrossRef CAS.
  10. C. W. Bauschlicher, jun. and P. S. Bagus, J. Chem. Phys., 1984, 81, 5889 CrossRef.
  11. M. R. A. Blomberg, U. B. Brandemark, P. E. M. Siegbahn, K. B. Mathisen and G. Karlström, J. Phys. Chem., 1985, 89, 2171 CrossRef CAS.
  12. C. M. Rohlfing and P. J. Hay, J. Chem. Phys., 1985, 83, 4641 CrossRef CAS.
  13. C. W. Bauschlicher, jun., C. J. Nelin, P. S. Bagus and B. O. Roos, J. Chem. Phys., 1986, 85, 354 CrossRef.
  14. M. R. A. Blomberg, U. B. Brandemark, J. Johansson, P. E. M. Siegbahn and J. Wennerberg, J. Chem. Phys., 1988, 88, 4324 CrossRef CAS.
  15. J. Koutecky, G. Pacchioni and P. Fantucci, Chem. Phys., 1985, 99, 87 CrossRef CAS.
  16. P. S. Bagus, K. Hermann and C. W. Bauschlicher, jun., J. Chem. Phys., 1984, 80, 4378 CrossRef CAS.
  17. R. Fournier, J. Chem. Phys., 1993, 98, 8041 CrossRef CAS.
  18. R. Fournier, J. Chem. Phys., 1993, 99, 1801 CrossRef CAS.
  19. C. Adamo and F. Lelj, J. Chem. Phys., 1995, 103, 10 605 CrossRef CAS.
  20. G. Pacchioni and N. Rösch, Acc. Chem. Res., 1995, 28, 390 CrossRef CAS.
  21. J. M. Burlich, M. E. Leonowicz, R. B. Petersen and R. E. Hughes, Inorg. Chem., 1979, 18, 1097 CrossRef.
  22. Local Density Approximations in Quantum Chemistry and Solid-State Physics, eds. J. P. Dahl and J. Avery, Plenum, New York, 1989 Search PubMed.
  23. R. G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989 Search PubMed.
  24. Density Functional Methods in Chemistry, eds. J. K. Labanowski and J. W. Andelm, Springer, New York, 1991 Search PubMed.
  25. T. Ziegler, Chem. Rev., 1991, 91, 651 CrossRef CAS.
  26. A. St-Amant, DEFT, a FORTRAN program, University of Ottawa, 1994.
  27. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  28. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  29. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  30. F. Rogemond, H. Chermette and D. R. Salahub, Chem. Phys. Lett., 1994, 219, 228 CrossRef CAS.
  31. A. J. Bridgeman, J. Chem. Soc., Dalton Trans., 1996, 2601 RSC.
  32. A. J. Bridgeman, J. Chem. Soc., Dalton Trans., 1996, 4555 RSC.
  33. N. Godbout, D. R. Salahub, J. Andzelm and E. Wimmer, Can. J. Chem., 1992, 70, 1992.
  34. Gaussian Basis Sets for Molecular Calculations, ed. S. Huzinaga, Elsevier, New York, 1984 Search PubMed.
  35. I. Mayer, Chem. Phys. Lett., 1983, 97, 270 CrossRef CAS.
  36. I. Mayer, Int. J. Quantum Chem., 1984, 26, 151 CrossRef CAS.
  37. A. Skancke and J. F. Liebman, J. Phys. Chem., 1994, 98, 13 215 CrossRef CAS.
  38. S. S. Wesolowski, T. D. Crawford, J. T. Hermann and H. F. Schäfer, J. Chem. Phys., 1996, 104, 3672 CrossRef CAS.
  39. C. W. Bauschlicher, jun., L. A. Barnes and S. R. Langhoff, Chem. Phys. Lett., 1988, 151, 391 CrossRef.
  40. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1986 Search PubMed.
  41. M. A. Blitz, S. A. Mitchell and P. A. Hatchett, J. Phys. Chem., 1991, 95, 8719 CrossRef CAS.
  42. M. J. McQuaid, K. Morris and J. L. Gole, J. Am. Chem. Soc., 1988, 110, 5280 CrossRef CAS.
  43. C. E. Brown, S. A. Mitchell and P. A. Hatchett, Chem. Phys. Lett., 1992, 191, 175 CrossRef CAS.
  44. L. S. Sunderlin, D. Wang and R. R. Squires, J. Am. Chem. Soc., 1992, 114, 2788 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.