Molecular mechanics calculations on imine and mixed-ligand systems of CoIII, NiII and CuII

(Note: The full text of this document is currently only available in the PDF Version )

Robert J. Deeth and Veronica J. Paget


Abstract

The force field for the cellular ligand field stabilisation energy/molecular mechanics (CLFSE/MM) method has been applied to 28 transition-metal complexes. Computed and experimental structures are compared for 12 MLxCl6-x species (M = CoIII or NiII; L = amine donor; x = 6 or 4), 12 MAxB6-x compounds (M = NiII or CuII; A = imine, B = amine; x = 6, 4 or 3), one five-co-ordinate copper(II) imine–amine complex and three four-co-ordinate copper(II) imine and imine–amine molecules. For π-bonding ligands a stronger donor interaction is associated with a larger positive value of the CLF eπ parameter but, due to the use of a crystal field type barycentre, the CLFSE actually goes up. The CLFSE thus has the wrong form for treating the π contributions to bond stretching and distance-dependent eπ parameters are inappropriate. However, the desired bond lengths can be obtained by modifying the Morse function and eσ terms. The π contribution to the L–M–L angle bending operates in the correct sense but is small and can also be accommodated by altering the magnitude of eσ. For asymmetric π interactions (eπx ≠ eπy) there is no effect on the M–L torsional potential for low-spin d[hair space]6, high-spin d[hair space]8 and d[hair space]9 configurations where the π-symmetry d orbitals are completely filled. Hence, only the σ-bonding contributions to the CLFSE are retained. This approach still gives good agreement with experimental structures, even for formally π-bonding ligands, with average root-mean-square errors in M–L lengths and L–M–L angles of about 0.02 Å and 3° for CoIII, NiII and four co-ordinate CuII, excluding [Cu(bipy)2]2+ (bipy = 2,2′-bipyridyl), and about 0.05 Å and 4° respectively for six-co-ordinate CuII, excluding [Cu(terpy)2]2+ (terpy = 2,2′∶6′,2″ -terpyridyl). The subtle interplay between the axial Ni–Cl and equatorial Ni–N distances in trans-[NiN4Cl2] macrocyclic species is reproduced for the first time by an MM-based approach. However, the model appears to give relatively poor agreement for [Cu(bipy)2(NH3)]2+, [Cu(terpy)2]2+ and [Cu(bipy)2]2+. For the five-co-ordinate complex this is due to the intrinsic plasticity of five-co-ordinate copper(II) species. The energy difference between the limiting trigonal-bipyramidal and square-pyramidal geometries is only a few kcal mol-1. For [Cu(terpy)2]2+ the limiting geometries of tetragonally elongated and compressed octahedra are also within a few kcal mol-1 although the present set of parameters overestimates the ligand contribution and predicts a compressed geometry. The calculated structure of [Cu(bipy)2]2+ is too flat but for four-co-ordinate species it is shown, using [CuCl4]2- as an example, that there are several ways to induce a tetrahedral distortion. The most satisfactory method is to include charges on Cu and the ligand donors whereupon the geometries of [CuCl4]2- and [Cu(bipy)2]2+ distort to the required flattened tetrahedral structures.


References

  1. V. J. Burton, R. J. Deeth, C. M. Kemp and P. J. Gilbert, J. Am. Chem. Soc., 1995, 117, 8407 CrossRef CAS.
  2. P. Comba and T. W. Hambley, Molecular Modelling of Inorganic Compounds, VCH, Weinheim, 1995 Search PubMed.
  3. P. V. Bernhardt and P. Comba, Inorg. Chem., 1992, 33, 2638 CrossRef.
  4. P. V. Bernhardt, P. Comba, T. W. Hambley, S. S. Massoud and S. Stebler, Inorg. Chem., 1992, 31, 2644 CrossRef CAS.
  5. R. K. Adam, M. Antolovich, L. G. Brigden and L. F. Lindoy, J. Am. Chem. Soc., 1991, 113, 3346 CrossRef.
  6. B. P. Hay, Coord. Chem. Rev., 1993, 126, 177 CrossRef CAS.
  7. P. Comba, T. W. Hambley and L. Zipper, Helv. Chim. Acta, 1988, 71, 1875 CrossRef CAS.
  8. T. W. Hambley, Inorg. Chem., 1988, 27, 1073 CrossRef CAS.
  9. T. W. Hambley, J. Chem. Soc., Dalton Trans., 1986, 565 RSC.
  10. T. W. Hambley, C. J. Hawkins, J. A. Palmer and M. R. Snow, Aust. J. Chem., 1991, 34, 45.
  11. R. D. Hancock, S. M. Dobson, A. Evers, P. W. Wade, M. P. Ngwenya and J. C. A. Boeyens, J. Am. Chem. Soc., 1988, 110, 2788 CrossRef CAS.
  12. V. J. Burton and R. J. Deeth, J. Chem. Soc., Chem. Commun., 1995, 573 RSC.
  13. M. Gerloch, Magnetism and Ligand Field Analysis, Cambridge University Press, New York, 1983 Search PubMed.
  14. M. Gerloch, J. H. Harding and R. G. Woolley, Struct. Bonding (Berlin), 1981, 46, 1 CAS.
  15. Cambridge Structural Database, Version 4, Cambridge Crystallographic Data Centre, University Chemical Laboratory, Cambridge, 1994.
  16. E. O. Schlemper, J. Cryst. Mol. Struct., 1977, 7, 81 Search PubMed.
  17. E. N. Duesler and K. N. Raymond, Inorg. Chem, 1971, 10, 1486 CrossRef.
  18. R. Nagao, F. Marumo and Y. Saito, Acta Crystallogr., Sect. B, 1973, 29, 2438 CrossRef CAS.
  19. T. W. Hambley, G. H. Searle and M. R. Snow, Aust. J. Chem., 1982, 35, 1285 CAS.
  20. K. Matsumoto, S. Ooi and H. Kuroya, Bull. Chem. Soc. Jpn., 1970, 43, 3801 CAS.
  21. A. S. Foust and V. Janickis, Inorg. Chem., 1980, 19, 1048 CrossRef CAS.
  22. J. D. Mather, R. E. Tapscott and C. F. Campana, Inorg. Chim. Acta, 1983, 73, 235 CrossRef CAS.
  23. T. Ito and K. Toriumi, Acta Crystallogr., Sect. B, 1981, 37, 88 CrossRef.
  24. T. Ito, M. Kato and H. Ito, Bull. Chem. Soc. Jpn., 1984, 57, 2641 CAS.
  25. M. Sugimoto, J. Fugita, H. Ito, K. Toriumi and T. Ito, Inorg. Chem., 1983, 22, 955 CrossRef CAS.
  26. A. A. Watson, D. A. House and P. J. Steel, Inorg. Chim. Acta, 1987, 130, 167 CrossRef CAS.
  27. J. P. Konopelski, C. W. Reimann, C. R. Hubbard, A. D. Mighell and A. Santoro, Acta Crystallogr., Sect. B, 1976, 32, 2911 CrossRef.
  28. A. Wada, N. Sakabe and J. Tanaka, Acta Crystallogr., Sect. B., 1976, 32, 1121 CrossRef.
  29. M. I. Arriortua, T. Rojo, J. M. Amigo, G. Germain and J. P. Declercq, Bull. Soc. Chim. Belg., 1982, 91, 337 CAS.
  30. P. V. Bernhardt, P. Comba, A. Mahu-Rickenbach, S. Stebler, S. Steiner, K. Varnagy and M. Zehnder, Inorg. Chem., 1992, 31, 4194 CrossRef CAS.
  31. C. W. Reinann, A. Santoro and A. D. Mighell, Acta Crystallogr., Sect. B, 1970, 26, 521 CrossRef.
  32. A. W. Maverick, M. L. Ivie and F. R. Fronczek, J. Coord. Chem., 1990, 21, 315 CAS.
  33. P. V. Bernhardt, P. Comba, A. Mahu-Rickenbach, S. Stebler, S. Steiner, K. Varnagy and M. Zehnder, Inorg. Chem., 1992, 31, 4194 CrossRef CAS.
  34. O. P. Anderson, J. Chem. Soc., Dalton Trans., 1972, 2597 RSC.
  35. T. Astley, J. M. Gulbis, M. A. Hitchman and E. R. T. Tiekink, J. Chem. Soc., Dalton Trans., 1993, 509 RSC.
  36. D. L. McFadden, A. T. McPhail, C. D. Garner and F. E. Mabbs, J. Chem. Soc., Dalton Trans., 1975, 263 RSC.
  37. J. V. Folgado, W. Henke, R. Allmann, H. Stratmeier, D. Beltran-Porter, T. Rojo and D. Reinen, Inorg. Chem., 1990, 29, 2035 CrossRef CAS.
  38. F. S. Stephens, J. Chem. Soc., Dalton Trans., 1972, 1350 RSC.
  39. G. Fransson and B. K. S. Lundberg, Acta Chem. Scand., 1972, 26, 3969 CAS.
  40. D. L. Lewis and D. J. Hodgson, Inorg. Chem., 1974, 13, 143 CrossRef CAS.
  41. H. Nakai, Bull. Chem. Soc. Jpn., 1971, 44, 2412 CAS.
  42. R. D. Hancock, Prog. Inorg. Chem., 1989, 37, 187 CAS.
  43. T. Ito, M. Kato and H. Ito, Bull. Chem. Soc. Jpn., 1984, 57, 1556 CAS.
  44. P. B. Hitchcock, K. R. Seddon and T. Welton, J. Chem. Soc., Dalton Trans., 1993, 2639 RSC.
  45. R. Allmann, W. Henke and D. Reinen, Inorg. Chem., 1978, 17, 378 CrossRef CAS.
  46. R. J. Deeth and M. A. Hitchman, Inorg. Chem., 1986, 25, 1225 CrossRef CAS.
  47. W. D. Harrison, D. M. Kennedy, M. Power, R. Sheahen and B. J. Hathaway, J. Chem. Soc., 1963, 1556 Search PubMed.
  48. G. A. Barely, B. F. Hoskins and C. H. C. Kennard, J. Chem. Soc., 1963, 5691 RSC.
  49. K. E. Halvarson, C. Patterson and R. D. Willett, Acta Crystallogr., Sect. B, 1990, 46, 508 CrossRef.
  50. P. D. Sheen, Ph.D. Thesis, 1995, Bath University; K. Waizumi, H. Masuda, H. Einaga and N. Fukushima, Chem. Lett., 1993, 1145 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.