Structures and luminescent properties of polynuclear gold(I) halides containing bridging phosphine ligands

(Note: The full text of this document is currently only available in the PDF Version )

Hong Xiao, Yu-Xiang Weng, Wing-Tak Wong, Thomas C. W. Mak and Chi-Ming Che


Abstract

The complexes [AuI(PPh3)] 1, [Au2(µ-dppm)Cl2] 2 [dppm = bis(diphenylphosphine)methane], [Au2(µ-dppm)I2] 3, [Au3(µ-tppm)Cl3] 4 [tppm = tris(diphenylphosphino)methane], [Au3(µ-tppm)I3] 5, [Au3(µ-dpmp)2Cl2]Cl 6 [dpmp = bis(diphenylphosphinomethyl)phenylphosphine] and [Au3(µ-dpmp)2I2]I 7 were prepared. The crystal structures of 57 have been established by X-ray crystal analysis. The measured intramolecular Au–Au distances are 3.136(1) Å in 5, 2.946(3) and 2.963(3) Å in 6 and 2.952(1) and 3.020(1) Å in 7. Extended-Hückel molecular orbital calculations revealed that the 6p orbitals of iodide and 5d orbitals of gold(I) make a significant contribution to the highest occupied molecular orbitals of 5 and of 2 and 4 respectively. The lowest unoccupied molecular orbitals of these complexes mainly comprise π* orbitals of the phosphines. The photophysical properties of 16 have been studied. All show dual emissions. The low-energy emissions at around 660–680 nm have a small red shift in energy from chloro to iodo complexes, and a much higher intensity at room temperature than at 77 K. These are attributed to triplet states with mixed 3m.m.l.c.t. (metal–metal to ligand charge transfer, gold→phosphine) and 3l.l.c.t. (ligand to ligand charge transfer, halide to phosphine) characters. The high-energy emissions at around 460–530 nm are more prominent at 77 K and assigned to intraligand and or 3m.l.c.t. (metal to ligand charge transfer) transitions. The temperature effects on the luminescence lifetimes of these complexes have also been studied.


References

  1. P. C. Ford and A. Vogler, Acc. Chem. Res., 1993, 26, 220 CrossRef CAS.
  2. A. Vogler and H. Kunkley, Chem. Phys. Lett., 1989, 158, 74 CrossRef CAS; C. M. Che, H. K. Yip, D. Li, S. M. Peng, G. H. Lee, Y. M. Wang and S. T. Liu, J. Chem. Soc., Chem. Commun., 1991, 1615 RSC; D. M. Knotter, H. L. van Maanen, D. M. Grove, A. L. Spek and G. van Koten, Inorg. Chem., 1991, 30, 3309 CrossRef CAS.
  3. (a) C. M. Che, H. L. Kwong, V. W. W. Yam and C. K. Cho, J. Chem. Soc., Chem. Commun., 1989, 855 RSC; (b) C. M. Che, H. L. Kwong, V. W. W. Yam and C. K. Poon, J. Chem. Soc., Dalton Trans., 1990, 3215 RSC; (c) V. W. W. Yam, T. F. Lai and C. M. Che, J. Chem. Soc., Dalton Trans., 1990, 3747 RSC; (d) C. M. Che, W. T. Wong, T. F. Lai, H. L. Kwong, C. K. Poon and V. W. W. Yam, J. Chem. Soc., Dalton Trans., 1992, 2445 RSC; (e) C. M. Che, H. K. Yip, V. W. W. Yam, P. Y. Cheung, T. F. Lai, S. J. Shieh and S. M. Peng, J. Chem. Soc., Dalton Trans., 1992, 427 RSC; (f) D. Li, C. M. Che, S. M. Peng, S. T. Liu, Z. Y. Zhou and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1993, 189 RSC; (g) H. Xiao, K. K. Cheung, C. X. Guo and C. M. Che, J. Chem. Soc., Dalton Trans., 1994, 1867 RSC.
  4. (a) C. King, J. C. Wang, S. Wang, M. N. I. Khan and J. P. Fackler, jun., Inorg. Chem., 1988, 27, 1672 CrossRef CAS; (b) C. King, M. N. I. Khan, R. J. Staples and J. P. Fackler, jun., Inorg. Chem., 1992, 31, 3236 CrossRef CAS; (c) J. P. Fackler, jun., B. Assmann, K. Angermaier and H. Schmidbaur, Inorg. Chem., 1995, 34, 75 CrossRef; (d) Z. Assefa, B. G. McBurnett, R. J. Staples and J. P. Fackler, jun., Inorg. Chem., 1995, 34, 4965 CrossRef CAS; (e) J. M. Forward, D. Bohmann, J. P. Fackler, jun. and R. J. Staples, Inorg. Chem., 1995, 34, 6330 CrossRef CAS.
  5. H. K. Yip, A. Schier, J. Riede and H. Schmidbaur, J. Chem. Soc., Dalton Trans., 1994, 2333 RSC; T. M. McCleskey and H. B. Gray, Inorg. Chem., 1992, 31, 1733 CrossRef CAS.
  6. R. Appel, K. Geisler and H. F. Schöler, Chem. Ber., 1979, 112, 648 CrossRef CAS.
  7. K. C. Dash and H. Schmidbaur, Chem. Ber., 1973, 106, 1221 CAS.
  8. H. Schmidbaur, A. Wohlleben, F. Wagner, O. Orama and G. Huttner, Chem. Ber., 1977, 110, 1748 CrossRef CAS.
  9. A. Stützer, P. Bissinger and H. Schmidbaur, Chem. Ber., 1992, 125, 367.
  10. (a) SDP Structure Determination Package, Enraf-Nonius, Delft, 1985; (b) G. M. Sheldrick, in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, New York, 1985, p. 175 Search PubMed.
  11. J. A. Ibers and W. C. Hamilton(Editors), International Tables for X-Ray Crystallogaphy, Kynoch Press, Birmingham, 1974, vol. 4, p. 55, 149 Search PubMed.
  12. (a) M. A. Thompson, ARGUS, A Quantum Chemical Electronic Structure Program, Version 1.1 User Manual, Pacific Northwest Laboratory, Richland, WA, 1992 Search PubMed; (b) L. C. Porter, M. N. I. Khan, C. King and J. P. Fackler, jun., Acta Crystallogr., Sect. C, 1989, 45, 947 CrossRef.
  13. P. Pyykkö, J. Li and N. Runeberg, Chem. Phys. Lett., 1994, 218, 133 CrossRef.
  14. H. Schmidbauer, Gold Bull., 1990, 23, 11 Search PubMed.
  15. K. R. Klye, W. E. Palke and P. C. Ford, Coord. Chem. Rev., 1990, 97, 35 CrossRef.
  16. W. A. Fordyce, H. Rau, M. L. Stone and G. A. Crosby, Chem. Phys. Lett., 1981, 77, 404 CrossRef.
  17. C. K. Ryu, M. Vitale and P. C. Ford, Inorg. Chem., 1993, 32, 869 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.