Lithiated amidines: syntheses and structural characterisations

(Note: The full text of this document is currently only available in the PDF Version )

James Barker, Donald Barr, Nicholas D. R. Barnett, William Clegg, Ian Cragg-Hine, Matthew G. Davidson, Robert P. Davies, Susan M. Hodgson, Judith A. K. Howard, Melvyn Kilner, Christian W. Lehmann, Isabel Lopez-Solera, Robert E. Mulvey, Paul R. Raithby and Ronald Snaith


Abstract

The reaction of a toluene solution of PhNC(Ph)NHPh (N,N′-diphenylbenzamidine) with n-butyllithium gave the toluene-solvated amidinolithium compound {Li[PhNC(Ph)NPh]}n1. Similarly the same reaction performed in the presence of the Lewis-base donors (Me2N)3PO (hmpa), Me2N(CH2)2NMe2 (tmen) or [Me2N(CH2)2]2NMe (pmdien) yielded the amidinolithium complexes {Li[PhNC(Ph)NPh·hmpa]}22, {Li[PhNC(Ph)NPh]·tmen} 3 and {Li[PhNC(Ph)NPh]·pmdien} 4 respectively. In addition the reaction of a toluene solution of the related amidine PhNC(Me)NHPh (N,N′-diphenylacetamidine) with LiBun in the presence of hmpa afforded {Li[PhNC(Me)NPh]·hmpa}25. The solid-state structures of 25, which have been resolved by single-crystal X-ray diffraction methods, show both similarities and differences. The complexes 3 and 4, which contain the di- and tri-dentate ligands tmen and pmdien respectively, are monomeric, whilst use of the unidentate Lewis base hmpa results in dimers 2 and 5. However, the way in which dimerisation is achieved differs. The co-ordination geometry about the lithium cation is clearly influenced by the choice of donor and as such shows how a change in the denticity of the donor ligand utilised can have a significant effect on the solid-state structure of the system.


References

  1. C. Masters, Homogeneous Transition-Metal Catalysis: A Gentle Art, Chapman and Hall, London, 1981 Search PubMed.
  2. J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219 CrossRef CAS.
  3. A. I. Meyers, W. F. Rieker and L. M. Fuentes, J. Am. Chem. Soc., 1983, 105, 2082 CrossRef CAS.
  4. (a) D. Stalke, M. Wedler and F. T. Edelmann, J. Organomet. Chem., 1992, 431, Cl CrossRef; (b) M. S. Eisen and M. Kapon, J. Chem. Soc., Dalton Trans, 1994, 3507 RSC; (c) T. Gebauer, K. Dehnicke, H. Goesmann and D. Fenske, Z. Naturforsch., Teil B, 1994, 49, 1444 CAS.
  5. I. Cragg-Hine, M. G. Davidson, F. S. Mair, P. R. Raithby and R. Snaith, J. Chem. Soc., Dalton Trans., 1993, 2423 RSC.
  6. C. Lambert, Y.-D. Wu and P. v. R. Schleyer, J. Chem. Soc., Chem. Commun., 1993, 255 RSC.
  7. D. Barr, W. Clegg, R. E. Mulvey and R. Snaith, J. Chem. Soc., Chem. Commun., 1984, 700 RSC.
  8. L. M. Engelhardt, G. E. Jacobsen, P. C. Junk, C. L. Raston, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1988, 1011 RSC.
  9. N. W. Alcock, J. Barker and M. Kilner, Acta Crystallogr., Sect. C, 1988, 44, 712 CrossRef.
  10. J. Barker, W. Errington, P. R. Phillips and M. G. H. Wallbridge, unpublished work.
  11. J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105 CrossRef CAS.
  12. W. Clegg, Acta Crystallogr., Sect A, 1981, 37, 22 CrossRef.
  13. G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 CrossRef.
  14. G. M. Sheldrick, SHELXL 93, program for crystal structure refinement, University of Göttingen, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.