Solvent extraction of metal ions from nitric acid solution using N,N[hair space]′-substituted malonamides. Experimental and crystallographic evidence for two mechanisms of extraction, metal complexation and ion-pair formation

(Note: The full text of this document is currently only available in the PDF Version )

Gabriel Y. S. Chan, Michael G. B. Drew, Michael J. Hudson, Peter B. Iveson, Jan-Olov Liljenzin, Mats Skålberg, Lena Spjuth[hair space] and Charles Madic


Abstract

The solvent extraction of actinides including AmIII and CmIII together with some trivalent lanthanides from nitric acid solutions by two newly synthesized malonamides, N,N′-dimethyl-N,N′ -diphenyltetradecylmalonamide (dmptdma) and N,N′-dicyclohexyl-N,N′ -dimethyltetradecylmalonamide (dcmtdma) has been investigated and compared with data for the reference malonamide, N,N′-dibutyl-N,N′ -dimethyloctadecylmalonamide (dbmocma). The dependence of the extraction on the nitric acid and malonamide concentrations together with the probable molecular structure of the extraction species from nitric acid solution suggests that there are two principal mechanisms of extraction. For low nitric acid concentrations (up to 1 mol dm-3) a co-ordinative mechanism dominates for the extraction of metal cations, whereas at higher nitric acid concentrations (1–14 mol dm-3) an ion-pair mechanism involving the mono- or di-protonated malonamide and the metal anions [M(NO3)4]- or [M(NO3)5]2- appears to be more important. Crystal structures show that in the protonated, unalkylated species Hdcmma[hair space]+ (dcmma = N,N′-dicyclohexyl-N ,N′-dimethylmalonamide) and in the chelated complexes [Nd(NO3)3(dcmma)2], [Nd(NO3)3(H2O)2(dmpma)] and [Yb(NO3)3(H2O)(dmpma)] (dmpma = N,N′-dimethyl-N ,N′-diphenylmalonamide) the carbonyl oxygens lie cis to each other suggesting that it is the cis form which is involved in extraction. However, crystal structures of the free unalkylated malonamides N,N′-dicyclohexyl-N,N′ -diethylmalonamide and N,N′-dicyclohexyl-N,N′ -diisopropylmalonamide show that the carbonyl amide groups adopt a trans configuration in which the carbonyl oxygens are at maximum separation. By contrast, in the crystal structure of the diphenyl derivative dmpma the carbonyl amide groups adopt a gauche configuration with an O[double bond, length as m-dash]C · · · C [double bond, length as m-dash]O torsion angle of 57.2°. Conformational analysis confirms that the differences in these structures reflect the differences between the lowest-energy gas-phase conformations and are not caused by packing effects.


References

  1. J. Tommasi, M. Delpech, J. P. Grouiller and A. Zaetta, Nucl. Technol., 1995, 111, 133 Search PubMed.
  2. M. Salvatores, A. Zaetta, C. Girard, M. Delpech, I. Slessarev and J. Tommasi, Int. J. Appl. Radiat. Isot., 1995, 46, 681 Search PubMed.
  3. J. Emsley, The Elements, Clarendon Press, Oxford, 1989 Search PubMed.
  4. Z. Kolarik, Separation of Actinides and Long-lived Fission Products from High-level Radioactive Wastes (a review), Kernforschungszentrum, Karlsruhe, 1991 Search PubMed.
  5. C. Musikas and H. Hubert, Ion Exch. Solvent Extr., 1987, 5, 877 Search PubMed.
  6. G. F. Best, E. Hesford and H. A. C. McKay, J. Inorg. Nucl. Chem., 1959, 12, 136 CrossRef CAS.
  7. D. Scargill, K. Alcock, J. M. Fletcher, E. Hesford and H. A. C. McKay, J. Inorg. Nucl. Chem., 1957, 4, 304 CrossRef CAS.
  8. W. W. Schulz and E. P. Horwitz, Sep. Sci. Technol., 1988, 23, 1191 CrossRef CAS.
  9. E. P. Horwitz and W. W. Schulz, Solvent Extraction and Ion Exchange in the Nuclear Fuel Cycle, eds. D. H. Logsdail and A. L. Mills, Ellis Horwood, Chichester, 1985 Search PubMed.
  10. T. H. Siddall III, R. L. McDonald and W. E. Stewart, J. Mol. Spectrosc., 1968, 28, 243 CrossRef.
  11. C. Musikas, Inorg. Chim. Acta, 1987, 140, 197 CrossRef CAS.
  12. C. Cuillerdier, C. Musikas, P. Hoel, L. Nigond and X. Vitart, Sep. Sci. Technol., 1991, 26, 1229 CrossRef CAS.
  13. Q. Tian and M. A. Hughes, Hydrometallurgy, 1994, 36, 79 CrossRef CAS.
  14. W. Kabsch, J. Appl. Crystallogr., 1988, 21, 916 CrossRef CAS.
  15. SHELXS 86, G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467 Search PubMed.
  16. SHELXL 93, G. M. Sheldrick, program for crystal structure refinement, University of Göttingen, 1993.
  17. P. Byers and M. J. Hudson, unpublished work.
  18. L. Nigond, N. Condamines, P. Y. Cordier, J. Livet, C. Madic, C. Cuillerdier, C. Musikas and M. J. Hudson, Sep. Sci. Technol., 1995, 30, 2075 CrossRef CAS.
  19. F. H. Allen and O. Kennard, Chemical Design Automation News, 1993, 8, 31 Search PubMed.
  20. QUANTA/CHARMm, Version 3.23, Molecular Simulations Inc., Cambridge, UK; Waltham, MA, USA, 1996.
  21. GAUSSIAN 94, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challalcombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.
  22. P. Byers, M. G. B. Drew, M. J. Hudson, N. S. Isaacs and C. Madic, Polyhedron, 1994, 15, 349 CrossRef CAS.
  23. E. E. Castellano and R. W. Becker, Acta Crystallogr., Sect. B, 1981, 37, 61 CrossRef.
  24. L. Nigond, Ph.D. Thesis, Université Blaise Pascal, 1992, CEA-R-5610.
Click here to see how this site uses Cookies. View our privacy policy here.