Complexation of transition-metal ions, SnII, PbII and Al[hair space]III with nucleobase-substituted polyethers and dissociation of adduct ions studied by fast atom bombardment mass spectrometry[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Mandapati Saraswathi and Jack M. Miller


Abstract

Metal-ion-complexed dinucleotide analogues were studied by FAB mass spectrometry using tri- and bi-valent transition-metal ions (Cr to Zn), SnII, PbII and AlIII. Pairs of thymine nucleobases linked by (CH2)2- [O(CH2)2]nO(CH2) 2 chains (n = 1 1, 2 2, 3 3 or 4 4) and of adenine nucleobases (n = 1 5 or 4 6) co-ordinate to metal ions and form significant [M + M - H]+ and [M + MCl]+ ions. In addition, many transition-metal ions also give [M + M2X - 2H] (X = Cl or NO3) ions but CrIII produces [M + CrCl2]+ ions. The effect of the spacer chain length is reflected in the ease of formation of [M + M - H]+ and [M + MX]+ ions. Fragmentation of [M + MX]+ and [M + M2X - 2H] ions give [M + M - H]+ ions, suggesting that metal chelation through the nucleobase is more favoured than through the polyether. Complexes of compounds 16 with AlIII–glycerol give abundant [M + 117]+ complex ions (117 = Al + glycerol - 2H). The intensities of these ions decrease with increasing number of ethylene oxide units from 14. The same trend is also observed in 5 and 6. Bimetallic ions with an unipositive charge are also produced from 14. Dissociation of adduct ions labelled with deuterium confirms the substitution of amide protons with aluminium(III) in the elimination of glycerol.


References

  1. J. E. Kickham, S. J. Loeb and S. L. Murphy, J. Am. Chem. Soc., 1993, 115, 7031 CrossRef CAS.
  2. O. F. Schall and G. W. Gokel, J. Am. Chem. Soc., 1994, 116, 6089 CrossRef CAS.
  3. M. Saraswathi and J. M. Miller, J. Am. Soc. Mass Spectrom., 1996, 7, 42 CrossRef CAS.
  4. M. Moet-Ner (Mautner), J. Am. Chem. Soc., 1983, 105, 4912 CrossRef; R. B. Sharma and P. Kebarle, J. Am. Chem. Soc., 1984, 106, 3913 CrossRef CAS; D. J. Cram and J. M. Cram, Acc. Chem. Res., 1978, 11, 8 CrossRef CAS; D. J. Cram, Science, 1988, 240, 760 CAS.
  5. M. Saraswathi and J. M. Miller, J. Mass Spectrom., 1996, 31, 1011 CrossRef CAS.
  6. N. Grover, N. Gupta and H. H. Thorp, J. Am. Chem. Soc., 1992, 114, 3390 CrossRef CAS; N. Grover, T. W. Welch, T. A. Fairley, M. Cory and H. H. Thorp, Inorg. Chem., 1994, 33, 3544 CrossRef CAS; J. K. Barton and E. Lolis, J. Am. Chem. Soc., 1985, 107, 708 CrossRef CAS.
  7. H. Sigel and R. B. Martin, Chem. Rev., 1982, 82, 385 CrossRef CAS.
  8. M. L. Gross, Acc. Chem. Res., 1994, 27, 361 CrossRef CAS.
  9. M. J. Moet-Ner, J. Am. Chem. Soc., 1979, 101, 2396 CrossRef.
  10. J. H. Hamilton and J. Adams, 43rd ASMS Conference on Mass Spectrometry and Allied Topics, Georgia, May 1995, P609.
  11. M. Saraswathi and J. M. Miller, Can J. Chem., in the press Search PubMed.
  12. M. Saraswathi and J. M. Miller, Rapid Commun. Mass Spectrom., 1996, 10, 1706 CrossRef CAS.
  13. Y. C. Lee, A. I. Popov and J. Allison, Int. J. Mass Spectrom. Ion Phys., 1983, 51, 267 CrossRef CAS.
  14. SPARTAN SGI version 4.0.3 GL, Wavefunction Inc., Levine, CA, 1995.
Click here to see how this site uses Cookies. View our privacy policy here.