Azooximates of bi- and tri-valent nickel[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Soma Karmakar, Suranjan Bhanja Choudhury, Sanjib Ganguly and Animesh Chakravorty


Abstract

The reaction of arylazooximes, RC(NOH)NNPh (HLR, R = Me or Ph), with nickel(II) acetate tetrahydrate in methanol under anaerobic conditions afforded [NiLR3]- isolated as the NEt4+ salt. One (LPh)- ligand in [NiLPh3]- underwent facile displacement by L–L ligands like 2,2′-bipyridine (bipy) furnishing [NiLPh2(bipy)]. The NiIII–NiII reduction potential of [NiLR3]- in acetonitrile is ≈ 0.1 V vs. saturated calomel electrode. The trivalent complex [NiLR3] was quantitatively isolated via constant-potential electrolysis at 0.3 V. The NiIV–NiIII couple of the tris chelate was observed near 0.9 V, but the nickel(IV) complex could not be isolated in the solid state. The relatively low metal reduction potential allowing facile preparation of the stable [NiLR3] system is attributed to the strong-field nature of the oximato-N atom. In going from [NiLPh3]- to [NiLPh2(bipy)] the NiIII–NiII reduction potential increases by ≈ 0.3 V showing that (LPh)- is a much better stabiliser of NiIII than is bipy. The crystal structures of [NEt4][NiLPh3] and [NiLPh2(bipy)] have been determined. The geometry of [NiLR3] (S = ½) was studied with the help of its EPR spectrum (dz2 ground state) in the [CoLR3] lattice. Both [NiLR3]- and [NiLR3] have exclusive meridional geometry consistent with steric and angular-overlap considerations. In [NiLPh2(bipy)] the two anionic oximato functions are placed in mutually trans positions. The oximato-N ligand displays substantial trans influence. Thus in [NiLPh3]- the Ni–N (azo) bond lying trans to Ni–N (oxime) is ≈ 0.05 Å longer than the other two mutually trans Ni–N (azo) bonds. The average Ni–N (azo) distance in [NiLPh2(bipy)] is ≈ 0.04 Å shorter than that in [NiLPh3]- because none of the Ni–N (azo) bonds in the former complex is subject to the trans influence of Ni–N (oxime). In both complexes the Ni–N (oxime) lengths are significantly shorter than the Ni–N (azo) lengths, consistent with stronger Ni–N (oxime) σ bonding which is also a reason behind the strong-field nature of the oximate ligand.


References

  1. (a) K. Nag and A. Chakravorty, Coord. Chem. Rev., 1980, 33, 87 CrossRef CAS; (b) R. I. Haines and A. McAuley, Coord. Chem. Rev., 1981, 39, 77 CrossRef CAS; (c) A. Chakravorty, Isr. J. Chem., 1985, 25, 99 CAS; (d) A. G. Lappin and A. McAuley, Adv. Inorg. Chem., 1988, 32, 241 CAS.
  2. (a) E. I. Baucom and R. S. Drago, J. Am. Chem. Soc., 1971, 93, 6469 CrossRef CAS; (b) R. S. Drago and E. I. Baucom, Inorg. Chem., 1972, 11, 2064 CrossRef CAS; (c) G. Sproul and G. D. Stucky, Inorg. Chem., 1973, 12, 2898 CrossRef CAS; (d) H.-J. Krüger and R. H. Holm, J. Am. Chem. Soc., 1990, 112, 2955 CrossRef CAS; (e) H.-J. Krüger, G. Peng and R. H. Holm, Inorg. Chem., 1991, 30, 734 CrossRef CAS; (f) V. V. Pavlishchuk, A. W. Addison, R. J. Butcher and R. P. F. Kanters, Inorg. Chem., 1994, 33, 397 CrossRef CAS.
  3. (a) J. G. Mohanty and A. Chakravorty, Inorg. Chem., 1976, 15, 2912 CrossRef CAS; (b) A. N. Singh and A. Chakravorty, Inorg. Chem., 1980, 19, 969 CrossRef CAS; (c) S. B. Choudhury, D. Ray and A. Chakravorty, Inorg. Chem., 1991, 30, 4354 CrossRef CAS.
  4. (a) R. K. Panda, S. Acharya, G. Neogi and D. Ramaswamy, J. Chem. Soc., Dalton Trans., 1983, 1225 RSC; (b) S. Acharya, G. Neogi and R. K. Panda, Inorg. Chem., 1984, 23, 4393 CrossRef CAS.
  5. D. Ray and A. Chakravorty, Inorg. Chem., 1988, 27, 3292 CrossRef CAS.
  6. (a) P. Bandyopadhyay, P. K. Mascharak and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1981, 623 RSC; (b) D. Bandyopadhyay, P. Bandyopadhyay, A. Chakravorty, F. A. Cotton and L. R. Falvello, Inorg. Chem., 1983, 22, 1315 CrossRef CAS; (c) D. Bandyopadhyay, P. Bandyopadhyay, A. Chakravorty, F. A. Cotton and L. R. Falvello, Inorg. Chem., 1984, 23, 1785 CrossRef CAS; (d) C. K. Pal, S. Chattopadhyay, C. Sinha and A. Chakravorty, Inorg. Chem., 1994, 33, 6140 CrossRef CAS; (e) C. K. Pal, S. Chattopadhyay, C. Sinha and A. Chakravorty, Inorg. Chem., 1996, 35, 2442 CrossRef CAS.
  7. L. Malatesta and R. Pizzotti, Gazz. Chim. Ital., 1946, 76, 141 CAS.
  8. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  9. (a) M. H. Dickman and R. J. Doedens, Inorg. Chem., 1980, 19, 3112 CrossRef CAS; (b) A. R. Chakravarty, A. Chakravorty, F. A. Cotton, L. R. Falvello, B. K. Ghosh and M. Tomas, Inorg. Chem., 1983, 22, 1892 CrossRef CAS; (c) S. Pal, T. Melton, R. N. Mukherjee, A. R. Chakravarty, M. Tomas, L. R. Falvello and A. Chakravorty, Inorg. Chem., 1985, 24, 1250 CrossRef CAS; (d) S. Pal, R. N. Mukherjee, M. Tomas, L. R. Falvello and A. Chakravorty, Inorg. Chem., 1986, 25, 200 CrossRef CAS; (e) S. Chattopadhyay, P. Basu, S. Pal and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1990, 3829 RSC; (f) P. Basu, S. Pal and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1991, 3217 RSC; (g) V. Manivannan, S. Chattopadhyay, P. Basu and A. Chakravorty, Polyhedron, 1993, 12, 2725 CrossRef CAS; (h) V. Manivannan, S. Dutta, P. Basu and A. Chakravorty, Inorg. Chem., 1993, 32, 4807 CrossRef CAS; (i) V. Manivannan, Ph.D. Thesis, Jadavpur University, 1996.
  10. B. J. Henne and D. E. Bartak, Inorg. Chem., 1984, 23, 369 CrossRef CAS.
  11. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, 2nd edn., 1984, p. 750 Search PubMed.
  12. K. C. Kalia and A. Chakravorty, Inorg. Chem., 1968, 7, 2016 CrossRef CAS.
  13. A. G. Lappin, C. K. Murray and D. W. Margerum, Inorg. Chem., 1978, 17, 1630 CrossRef CAS.
  14. J. K. Burdett, Adv. Inorg. Chem. Radiochem., 1978, 21, 113 Search PubMed; Inorg. Chem., 1975, 14, 375, 931 Search PubMed; 1976, 15, 212.
  15. B. E. Bursten, J. Am. Chem. Soc., 1982, 104, 1299 CrossRef CAS; B. E. Bursten and M. R. Green, Prog. Inorg. Chem., 1988, 36, 393 CAS and refs. therein.
  16. P. Basu, S. B. Choudhury, S. Pal and A. Chakravorty, Inorg. Chem., 1989, 28, 2680 CrossRef CAS; P. Basu and A. Chakravorty, Inorg. Chem., 1992, 31, 4980 CrossRef CAS.
  17. R. D. Shannon and C. T. Prewitt, Acta Crystallogr., Sect. B, 1969, 25, 925 CrossRef CAS; R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  18. A. I. Vogel, A Text-Book of Practical Organic Chemistry, ELBS and Longman Group, London, 3rd edn., 1971, p. 169 Search PubMed.
  19. G. K. Lahiri, S. Bhattacharya, M. Mukherjee, A. K. Mukherjee and A. Chakravorty, Inorg. Chem., 1987, 26, 3359 CrossRef CAS.
  20. K. C. Kalia and A. Chakravorty, J. Org. Chem., 1970, 35, 2231 CrossRef CAS.
  21. G. M. Sheldrick, SHELXTL PLUS 88, Structure Determination Software Programs, Nicolet Instrument Corp., Madison, WI, 1988.
Click here to see how this site uses Cookies. View our privacy policy here.