Synthesis, isomerism and supramolecular chemistry of diphenylmethanimine complexes of the coinage metals

(Note: The full text of this document is currently only available in the PDF Version )

Wolfgang Schneider, Andreas Bauer and Hubert Schmidbaur


Abstract

The reactions of [AuCl(SMe2)] or [AuBr(C4H8S)] with 1 equivalent of diphenylmethanimine led to the formation of the complexes [AuCl(Ph2C[double bond, length as m-dash]NH)] 1a, [Au(Ph2C[double bond, length as m-dash]NH)2][AuCl2] 1b and [Au(Ph2C[double bond, length as m-dash]NH)2][AuBr2] 2, respectively. Treatment of 1a, 1b with KI in the two-phase system dichloromethane–water induced a redox process to give Au0 and [Au(Ph2C[double bond, length as m-dash]NH)2][I3] 3. The same result was obtained when AuI and Ph2C[double bond, length as m-dash]NH were allowed to react under anhydrous and oxygen-free conditions. Copper(I) iodide reacted with an excess of Ph2C[double bond, length as m-dash]NH with formation of the complex [CuI(Ph2C[double bond, length as m-dash]NH)] 4. Bis(diphenylmethanimine) complexes of gold, [Au(Ph2C[double bond, length as m-dash]NH)2]BF4 5, and silver, [Ag(Ph2C[double bond, length as m-dash]NH)2]BF4 6, were prepared by the reaction of 2 equivalents of the ketimine and [Au(PhCN)2]BF4 or AgBF4 in dichloromethane or tetrahydrofuran solutions, respectively. The crystal structures of the complexes 1a, 1b, 2, 3, 5 and 6 have been determined. The (Ph2C[double bond, length as m-dash]NH)AuCl units of compound 1a form infinite zigzag chains via weak Au[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]Au contacts [3.3633(5) Å]. In 1b two AuCl2- anions and two (Ph2C[double bond, length as m-dash]NH)2Au+ cations form a tetranuclear Z-type unit with Au[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]Au contacts of 3.1944(5) [Au(1)[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]Au(2)], 3.604(1) [Au(1)[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]Au(2′)] and 3.392(1)Å [Au(1)[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]Au(1 ′)]. The N–H[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]Cl geometry suggests hydrogen bonding between the hydrogen and chlorine atoms of neighbouring ions. The bromine compound 2 is isostructural to the chloride 1b with slightly longer Au[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]·[thin space (1/6-em)]Au distances. Compound 3 shows bis(diphenylmethanimine)gold(I) cations and triiodide anions with no anomalies in the packing and in bond distances and angles. The geometry of the silver(I) and gold(I) complexes 5 and 6 are quite similar except for the observation that the Au–N bond is 0.11 Å shorter than the Ag–N bond, which suggests that two-co-ordinate gold(I) is indeed smaller than two-co-ordinate silver(I) in systems with nitrogen-containing ligands, as previously observed for phosphine complexes.


References

  1. H. Hayashi, M. Mori, N. Shigemoto and T. Okazaki, Ind. Eng. Chem., Prod. Res. Dev., 1978, 17, 129 Search PubMed.
  2. H. Hayashi, K. Kawasaki, M. Fujii, A. Kainoh and T. Okazaki, J. Catal., 1976, 41, 367 CrossRef CAS.
  3. A. Misono, T. Osa and S. Koda, Bull. Chem. Soc. Jpn., 1968, 41, 373 CAS.
  4. H. Hayashi, T. Tanaka, N. Shigemoto and T. Okazaki, Chem. Lett., 1977, 981 CAS.
  5. P. Lange, H. Beruda, W. Hiller and H. Schmidbaur, Z. Naturforsch., Teil B, 1994, 49, 781 CAS.
  6. A. Grohmann, J. Riede and H. Schmidbaur, J. Chem. Soc., Dalton Trans., 1991, 783 RSC.
  7. A. Grohmann and H. Schmidbaur, Inorg. Chem., 1992, 31, 3378 CrossRef CAS.
  8. H. Schmidbaur, A. Kolb and P. Bissinger, Inorg. Chem., 1992, 31, 4370 CrossRef.
  9. A. Kolb, P. Bissinger and H. Schmidbaur, Z. Anorg. Allg. Chem., 1993, 619, 1580 CrossRef CAS.
  10. K. Angermaier and H. Schmidbaur, Chem. Ber., 1995, 128, 817 CrossRef CAS.
  11. P. Lange, A. Schier, J. Riede and H. Schmidbaur, Z. Naturforsch., Teil B, 1994, 49, 642 CAS.
  12. W. Schneider, K. Angermaier and H. Schmidbaur, Z. Naturforsch., Teil B, 1996, 51, 801 CAS.
  13. P. Lange, A. Schier, J. Riede and H. Schmidbaur, Z. Naturforsch., Teil B, 1994, 49, 642 CAS.
  14. A. Bauer, F. Gabbai, A. Schier and H. Schmidbaur, Philos. Trans., R. Soc. London, Ser. A., 1996, 354, 381 Search PubMed.
  15. A. Bauer and H. Schmidbaur, Chem. Ber., in the press Search PubMed.
  16. W. Schneider, K. Angermaier, A. Sladek and H. Schmidbaur, Z. Naturforsch., Teil B, 1996, 51, 790 CAS.
  17. W. Schneider, A. Sladek, A. Bauer, K. Angermaier and H. Schmidbaur, Z. Naturforsch., Teil. B, in the press Search PubMed.
  18. K. Angermaier and H. Schmidbaur, Chem. Ber., 1994, 127, 2387 CAS.
  19. H. Schmidbaur, Gold Bull., 1990, 23, 11 Search PubMed.
  20. H. Schmidbaur, Interdiscip. Sci. Rev., 1992, 17, 213 Search PubMed.
  21. H. Schmidbaur, Chem. Soc. Rev., 1995, 24, 391 RSC.
  22. Y. Nakao and K. Sone, Chem. Commun., 1996, 897 RSC.
  23. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  24. A. Bayler, A. Schier, G. A. Bowmaker and H. Schmidbaur, J. Am. Chem. Soc., 1996, 118, 7006 CrossRef CAS.
  25. P. L. Pickard and T. L. Tolbert, J. Org. Chem., 1961, 26, 4886 CrossRef CAS.
  26. K. C. Dash and H. Schmidbaur, Chem. Ber., 1973, 106, 1221 CAS.
  27. S. Ahrland, K. Dreisch, B. Noren and A. Oskarsson, Mater. Chem. Phys., 1993, 35, 281 CrossRef CAS.
  28. D. M. P. Mingos and J. Yau, J. Organomet. Chem., 1994, 479, C16 CrossRef CAS.
  29. G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.